Course
|
Credits
|
Scientific Disciplinary Sector Code
|
Contact Hours
|
Exercise Hours
|
Laboratory Hours
|
Personal Study Hours
|
Type of Activity
|
Language
|
20801605 -
BASICS OF INFORMATICS
(objectives)
The course "Fondamenti di Informatica" introduces basic concepts of computer science. Students will learn approaches and methodologies for the design of algorithms to solve math problems. Further, students will learn methodologies for the design of programs and the implementation of algorithms. In particular, students will learn the following specific topics.
- Algorithms, input and output, flow charts, properties of the algorithms, algorithm's execution, conditional operators, control statements and loops, top-down design of algorithms, iterative problems and design of iterative algorithms.
- Introduction to programming, variables, expressions, types, conditional operators, control statements, and loops in Java, errors and exceptions, programming style, programming paradigms, object-oriented programming, objects and classes, runtime model, methods, parameter binding, strings, arrays, implementation of algorithms on strings and arrays, binary representation of data.
-
FRATI FABRIZIO
( syllabus)
The course "Fondamenti di Informatica" introduces basic concepts of computer science. The course discusses approaches and methodologies for the design of algorithms to solve math problems. Further, the course shows methodologies for the design of programs and the implementation of algorithms. The main topics covered by the course are the following.
- Algorithms, input and output, flow charts, properties of the algorithms, algorithm's execution, conditional operators, control statements and loops, top-down design of algorithms, iterative problems and design of iterative algorithms.
- Introduction to programming, variables, expressions, types, conditional operators, control statements, and loops in Java, errors and exceptions, programming style, programming paradigms, object-oriented programming, objects and classes, runtime model, methods, parameter binding, strings, arrays, implementation of algorithms on strings and arrays, binary representation of data.
( reference books)
Luca Cabibbo. Fondamenti di informatica - Oggetti e Java - McGraw-Hill.
|
6
|
ING-INF/05
|
54
|
-
|
-
|
-
|
Basic compulsory activities
|
ITA |
20802081 -
GEOMETRY
(objectives)
THE COURSE AIMS TO PROVIDE AN INTRODUCTION TO THOSE ASPECTS OF LINEAR MATHEMATICS AND GEOMETRY NEEDED IN SCIENCE AND ENGINEERING.
|
|
20802081-2 -
COMPLEMENTI DI MATEMATICA
(objectives)
THE COURSE AIMS TO PROVIDE AN INTRODUCTION TO THOSE ASPECTS OF LINEAR MATHEMATICS AND GEOMETRY NEEDED IN SCIENCE AND ENGINEERING.
Group:
CANALE 1
-
VIVIANI FILIPPO
( syllabus)
PARTE 1: Forme bilineari e forme bilineari simmetriche. Matrice associata ad una forma bilineare in una data base e forma bilineare associata ad una matrice in una data base. Formula del cambiamento di base. Matrici congruenti. Il rango di una forma bilineare. Forma quadratica associata ad una forma bilineare simmetrica. Il teorema di diagonalizzazione delle forme quadratiche su un campo arbitrario. Il teorema di diagonalizzazione di forme quadratiche sul campo dei numeri complessi. Il teorema di diagonalizzazione delle forme quadratiche sul campo dei numeri reali (teorema di Sylvester): la segnatura. Classificazione delle forme quadratiche reali: (semi-)definite positive o negative, indefinite. Prodotto scalare su uno spazio vettoriale reale. Esempi: il prodotto scalare standard su R^n. Disuguaglianza di Schwarz. Norma indotta da un prodotto scalare e sue proprietà'. Basi ortogonali e ortonormali. La matrice di cambiamento base tra due basi ortonormali e' ortogonale. Come trovare basi ortogonali: il processo di ortogonalizzazione di Gram-Schmidt. Esercizi su Gram-Schmidt. Criterio di Sylvester (senza dimostrazione): una matrice reale simmetrica e' definita positiva se e solo se i suoi minori principali angolo sono positivi. Somma ortogonale di sottospazi di uno spazio vettoriale euclideo. Operatori unitari. Operatori unitari e matrici ortogonali. Il gruppo degli operatori unitari e delle matrici unitarie. Il duale di uno spazio vettoriale. Esempi. La base duale. Una forma bilineare su uno spazio vettoriale definisce due operatori lineari da uno spazio vettoriale nel suo duale che coincidono se e solo se la forma e' simmetrica e sono isomorfismi se e solo se la forma bilineare e' non degenere. Richiami sugli spazi vettoriali: due spazi vettoriali sono isomorfi se e solo se hanno la stessa dimensione, fissare una base di uno spazio vettoriale corrisponde a fissare un isomorfismo dello spazio vettoriale nello spazio vettoriale numerico. Il duale di un'applicazione lineare tra spazi vettoriali e la sua matrice associata. L'operatore aggiunto (o trasposto) di un operatore in uno spazio vettoriale euclideo e la sua matrice associata. Operatori simmetrici. Il teorema spettrale per operatori simmetrici. Esercizi. Gli autospazi di un operatore simmetrico sono ortogonali. Il teorema spettrale per matrici. Il teorema spettrale per forme quadratiche. Esercizi. Gli spazi affini. Esempi: lo spazio affine canonico associato ad uno spazio vettoriale, lo spazio affine numerico. Sistemi di coordinate affini. Sottospazi affini. Il sottospazio affine generato da un insieme finito di punti. Punti affinemente indipendenti. Un sottospazio affine e' univocamente determinato dalla sua giacitura e da un suo qualsiasi punto. Un sottospazio affine e' uno spazio affine sulla sua giacitura. Equazioni parametriche e cartesiane di sottospazi affini si uno spazio affine numerico. Risoluzione di sistemi lineari non omogenei. Formula di Grassman per due sottospazi affini. Posizione relativa di due sottospazi affini: paralleli, incidenti o sghembi. Spazi proiettivi e spazi proiettivi numerici. Sistema di coordinate omogenee (o riferimento proiettivo). Sottospazi proiettivi. Equazioni cartesiane e parametriche di sottospazi proiettivi. Intersezione e Somma di sottospazi proiettivi: formula di Grassman. Gli spazi proiettivi come "completamenti" di spazi affini. Isomorfismi di spazi proiettivi. Un isomorfismo e' completamente determinato dall'immagine dei punti fondamentali e dal punto unita' rispetto ad un sistema di coordinate proiettive. Il gruppo delle proiettivita' di uno spazio proiettivo.Il gruppo delle proiettivita' dello spazio proiettivo numerico e' il gruppo lineare proiettivo, cioe' il gruppo delle matrici invertibili modulo non-zero automorfismi. Spazi affini euclidei e loro isometrie. I tre tipi di geometrie e i loro gruppi di trasformazione: la geometria proeittiva (reale o complessa) e le proiettivita', la geometria affine (reale o complessa) e le affinita', la geometria affine euclidea e le isometrie. Curve algebriche piane (nelle tre geometrie) e il problema della loro classificazione. Il problema della classificazione delle coniche. Classificazione delle coniche proiettive reali o complesse. Esercizi. Classificazione delle coniche affini reali o complesse. Esercizi. Classificazione delle coniche euclidee. Esercizi.
PARTE 2: Equazioni differenziali di ordine uno: teorema di esistenza e unicita' Cauchy (senza dimostrazione) e risoluzione di equazioni differenziali al prim'ordine con variabili separate. Equazioni differenziali lineari di ordine n: lo spazio delle soluzioni come spazio affine di dimensione n (senza dimostrazione). Equazioni differenziali lineari di ordine uno: metodo risoluzione. Equazioni differenziali lineari di ordine n a coefficienti costanti: metodo di risoluzione ed esempio. Funzioni vettoriali ad una variabile (o archi di curve). Limiti e continuita'. Derivata e archi di curve regolari. Il vettore velocita', la velocita' scalare, il versore tangente di una curva regolare. Integrali di funzioni a valori vettoriali. Lunghezza di un arco di curva. Cambiamenti di parametrizzazione e parametrizzazione in forma d'arco. Integrali di linea e sue appplicazioni geometriche e fisiche. Il versore normale e la curvatura. La scomposizione dell'accelerazione. Digressione: il prodotto vettoriale nello spazio euclideo tridimensionale. Il versore binormale di una curva spaziale. Le formule di Frenet-Serret per le derivate del sistema di riferimento intrinseco di una curva. Le formule per la curvatura e la torsione. Esempi. Topologia di R^n: punti interni, di bordo (o frontiera) ed esterni di un sottoinsieme. L'interno e la chiusura di un sottoinsieme. Sottoinsiemi aperti o chiusi e loro proprieta'. Caratterizzazione dei chiusi in termini di convergenza di successioni. Sottoinsiemi limitati e compatti. Sottoinsiemi connessi. Funzioni reali di piu' variabili: limiti e continuita'. Criteri di esistenza del limite tramite maggiorazioni radiali e criteri di non esistenza del limite tramite restrizioni a curve. Proprieta' topologiche delle funzioni continue: l'immagine inversa di un aperto o di un chiuso e' aperta o chiusa (applicazione: il teorema della permanenza del segno), l'immagine di un compatto e' compatta (applicazone: teorema di Weiestrass sui massimi e minimi), l'immagine di un conneso e' connesso (applicazione: il teorema degli zeri). Funzioni derivabili, differenziabili e di classe C^1. L'iperpiano tangente al grafico di una funzione. Derivate direzionali e formula del gradiente. Calcolo delle derivate: gradiente di somma, prodotti o quozienti di funzioni derivabili, la formula di derivazione delle funzioni composte. Derivate parziali di ordine superiore. Funzioni di classe C^k e teorema di Schwartz sullo scambio dell'ordine di derivazione. La matrice Hessiana e il differenziale secondo. La formula di Taylor al secondo ordine con il resto di Lagrange e con il resto di Peano. Punti di massimo e minimo, globali e locali, forti e deboli. I punti di massimo e minimo locali sono punti critici. Lo studio dei punti critici tramite lo studio del segno della matrice Hessiana. Funzioni vettoriali di piu' variabili reali: continuita', derivabilita', differenziabilita', classe C^k. La matrice Jacobiana. La regola di derivazione di una composizione di funzioni. Le superfici parametrizzate in R^3: superfici regolare, piano tangente, versore normale. Esempi. Gli integrali doppi su un rettangolo: le funzioni continue sono integrabili, il calcolo dell'integrale con la doppia integrazione. Funzioni vettoriali di piu' variabili reali: continuita', derivabilita', differenziabilita', classe C^k. La matrice Jacobiana. La regola di derivazione della composizione di funzioni. Le superfici parametrizzate in R^3: superfici regolare, piano tangente, versore normale. Esempi. Gli integrali doppi su un rettangolo: le funzioni continue sono integrabili, calcolo dell'integrale doppio mediante doppia integrazione. Gli integrali doppi su domini x-semplici, y-semplici o regolari. Proprieta' dell'integrale doppio: linearita' nella funzione integranda, positivita' e monotonia, additivita' dell'integrale rispetto al dominio di integrazione, proprieta' di annullamento, teorema della media. Calcolo dell'integrale doppio su insiemi x-semplici o y-semplici mediante doppia integrazione. Diffeomorfismi locali e globali. Il teorema della funzione inversa. Esempi: coordinate polari, cilindriche, sferiche. Formula del cambiamento di variabili per il caloolo negli integrali doppi. Esercizi.
( reference books)
(1) E. Sernesi: Geometria 1. Bollati Boringhieri. (2) M. Bramanti, C.D. Pagani, S. Salsa: Analisi Matematica 2. Zanichelli. (3) S. Salsa, A. Squellati: : Esercizi di Analisi Matematica 2. Zanichelli.
Group:
CANALE 2
-
FOSCHI ALESSANDRO
( syllabus)
Symmetric bilinear forms and scalar products. Skewsymmetric bilinear forms. Degenerate and non-degenerate symmetric bilinear forms. The ordinary scalar product in R^n. The matrix of a symmetric bilinear form with respect to a basis. Examples of matrices of the same bilinear form with respect to different basis. Positive definite real symmetric matrices. Characterizations of symmetric matrices by the leading principal minors. Euclidean vector spaces and proper Euclidean vector spaces. Orthogonality between two vectors. Orthogonal systems of vectors and their linear independence. Fourier's coefficient. Gram-Schmidt's orthogonal algorithm. Scalar product matrices and change of basis. Norm of a vector. Versors. Orthonormal basis. Scalar product matrix with respect to orthonormal basis. Orthogonal matrices. Congruent matrices. Schwartz's inequality. Triangular inequality. Convex angle between two vectors. Quadratic forms. Polar symmetric bilinear form of a quadratic form. Orthogonal space to a vector. Orthogonal space to a vector subspace. Kernel of a symmetric bilinear form. The vector projection of a vector on a nonzero vector. Orthogonal operators and orthogonal matrices. Rank and signature of a symmetric bilinear form. Sylvester's law for symmetric bilinear forms. Hermitian forms and Hermitian spaces. Self-adjoint operators and unitary operators. Eigenvalues of hermitian matrices. Eigenvalues of symmetric matrices. Eigenvectors of different eigenvalues of a self-adjoint operator are orthogonal. The Spectral theorem. Symmetric operators and orthogonal operators. Diagonalizability of a quadratic form (canonical form). Diagonalizability of a symmetric bilinear form. Affine and Euclidean plane geometry and Cartesian coordinate system in the plane: the midpoint of a segment; Cartesian and parametric equations of a straight line; intersecting and parallel lines; sheaves of straight lines; direction cosines of an oriented line; slope; angle between two lines; perpendicularity between lines; distance between two points, between a point and a line, between two parallel lines; area of a triangle; circumferences; change of coordinates. Affine geometry of the space and Cartesian coordinate systems in the Space: Cartesian and parametric equations of a plane; chenge from parametric equations to cartesian equations and viceversa; intersection and parallelism between planes; sheaves of planes; Cartesian and parametric equations of a straight line; direction vectors; parallelism between lines; coplanar and skew straight lines; intersecting lines; intersection and parallelism between a line and a plane; sheaves of straight lines; direction cosines of an oriented line; angle between two lines; perpendicularity between lines; vectors perpendicular to a plane; angle between two planes; orthogonal projection of a straight line onto a plane; angle between a line and a plane; perpendicularity between a line and a plane; distance between two points; distance between a point and a line or a plane; distance between two parallel lines or two parallel planes; distance between a line parallel to a plane; minimum distance between two skew lines; straight line perpendicular to two skew lines. Spheres and circles in the space. Vector product. Area of a parallelogram. Mixed product. Volume of the parallelepiped and of the tetrahedron. Ellipse, hyperbola and parabola as loci and their canonical equations. Foci, directrix, vertices, axes, center and eccentricity of a conic. Intersection of a straight line with a conic. General and degenerate conics. Reduction to canonical form of the equation of a conic section. Metric classification of conics. Method of invariants. Ordinary differential equations. Order of a differential equation. Normal differential equations. Cauchy's problems. Some particular examples of first and second order differential equations and their solutions. Linear differential equation: general properties; homogeneous and non homogeneous linear differential equations; existence and uniqueness of the solution of a Cauchy problem for linear differential equations (without proof); linearly dependent and linearly independent real functions; wronskian of real functions: its definition and properties; general integral of a linear homogeneous differential equation (without proof); general integral of a linear non homogeneous differential equation (without proof); some particular examples of linear differential equations; Lagrange's method; homogeneous linear differential equations with constant coefficients and their general integral. Regular curves (definition and properties), equivalent curves, oriented curves, the lenght of a curve, theorem of rectificability of C^1 curves (without proof), curvature of a plane curve, Frenet's formulas for plane curves. The derivative of a scalar product and of a vector product in R^n. Biregular curves; curves in R^3: curvature, torsion, Frenet's frame, Frenet formulas for curves in the space; existence and uniqueness of a curve in R^3, curvature and torsion given (without proof).
( reference books)
1) Manlio Bordoni, Introduzione all'algebra lineare ed alla geometria analitica, Esculapio, 2013. 2) Francisco James Leon Trujillo-P. Mercuri, Elementi di algebra lineare, Efesto, 2016. 3) Francisco James Leon Trujillo-P. Mercuri, Geometria affine ed euclidea, Efesto, 2016. 4) M. Fusco-P. Marcellini-C. Sbordone, Analisi Matematica due, Liguori, 2001. 5) Lecture notes of the teacher
|
6
|
MAT/03
|
54
|
-
|
-
|
-
|
Basic compulsory activities
|
ITA |
20802115 -
PHYSICS I
(objectives)
THE COURSE INTRODUCES THE SCIENTIFIC METHOD, PRESENTS NEWTON'S MECHANICS AND THE MAIN ELECTRIC AND MAGNETIC PHENOMENA, TOGETHER WITH THE PERTINENT LAWS. THE STUDENT BECOMES FAMILIAR WITH THE BASIC MODELS OF CLASSICAL PHYSICS AND, IN PARTICULAR, WITH SUCH CONCEPTS AS PHYSICAL QUANTITY, FIELD, CONSERVATION LAW. THE STUDENT IS ABLE TO APPLY THE ABOVE CONCEPTS TO THE SOLUTION OF SIMPLE PROBLEMS BY MEANS OF APPROPRIATE ANALYTICAL PROCEDURES.
|
|
20802115-2 -
FISICA I MODULO II
(objectives)
THE COURSE INTRODUCES THE SCIENTIFIC METHOD, PRESENTS NEWTON'S MECHANICS AND THE MAIN ELECTRIC AND MAGNETIC PHENOMENA, TOGETHER WITH THE PERTINENT LAWS. THE STUDENT BECOMES FAMILIAR WITH THE BASIC MODELS OF CLASSICAL PHYSICS AND, IN PARTICULAR, WITH SUCH CONCEPTS AS PHYSICAL QUANTITY, FIELD, CONSERVATION LAW. THE STUDENT IS ABLE TO APPLY THE ABOVE CONCEPTS TO THE SOLUTION OF SIMPLE PROBLEMS BY MEANS OF APPROPRIATE ANALYTICAL PROCEDURES.
Group:
CANALE 1
-
Derived from
20802115-2 FISICA I MODULO II in INGEGNERIA ELETTRONICA (DM 270) L-8 CANALE 1 BORGHI RICCARDO
( syllabus)
1. Electrostatic force and field in vacuum - Electric charge and matter electronic structure. - Coulomb's law and Newton's law of universal gravitation. - Superposition principle. - Concept of field; scalar and vector fields; flux lines. - Electrostatic field. - Motion of a charged particle in a electrostatic field. - Electrostatic field flux and Gauss's law. - Gauss's law applications to charged distributions having planar, cylindrical and spherical symmetry.
2. Electric work and electrostatic potential - Electrostatic field circulation integral; conservative property of the electrostatic field. - Electric potential computation. - Electric potential energy. - Relationship between electrostatic field and potential: gradient and equipotential surfaces.
3. Conductors and dielectrics - Electric properties of conductors. - Electrostatic induction; Faraday cage. - Capacitance; capacitor. - Capacitors in series and parallel; capacitor energy. - Dielectrics, electric polarization and dielectric permittivity. - D field and corresponding Gauss's law.
4. Electric current - Electric current. Current density field J. - Stationary conditions. Solenoidal property of the field J. - local form of the Ohm's law. - Ohm's law and Joule effect. - Resistors in series and parallel. - Electromotive field and electromotive force. - Charging and discharging of a capacitor. - Kirchhoff's circuit laws.
5. Magnetic field - Magnetic interactions. - Magnetic induction field B; Lorentz force. - Biot-Savart law. - Magnetic force on a current carrying conductor. - Torque on a current carrying rectangular coil in a magnetic field. - Charged particle motion in a magnetic field. - Mass spectrometer and velocity selector. - Solenoidal property of the field B; Gauss's law for the magnetic field.
6. Magnetic field sources - Magnetic field of a current. - Ampère-Laplace law applications: straight wire, circular coil. - Forces between current carrying wires. - Ampère's circuital law (in integral form) and applications. - Magnetic properties of matter: diamagnetic, paramagnetic and ferromagnetic materials. - H field and its circulation integral.
7. Electromagnetic induction - Faraday's law. Lenz's law. - Induced and motional Electromotive force. - Inductance. Charging and discharging of an inductor. - Magnetic energy. - Mutual inductance. - Ampere-Maxwell's law. Displacement current. - Maxwell equations in integral form.
( reference books)
P. Mazzoldi, M. Nigro, C. Voci, "Elementi di Fisica. Vol. II: Elettromagnetismo - Onde", seconda edizione, Edises, Napoli
Group:
CANALE 4
-
Derived from
20802115-2 FISICA I MODULO II in INGEGNERIA ELETTRONICA (DM 270) L-8 CANALE 4 SANTARSIERO MASSIMO
( syllabus)
1. Electrostatic force and field in vacuum - Electric charge and matter electronic structure. - Coulomb's law and Newton's law of universal gravitation. - Superposition principle. - Concept of field; scalar and vector fields; flux lines. - Electrostatic field. - Motion of a charged particle in a electrostatic field. - Electrostatic field flux and Gauss's law. - Gauss's law applications to charged distributions having planar, cylindrical and spherical symmetry.
2. Electric work and electrostatic potential - Electrostatic field circulation integral; conservative property of the electrostatic field. - Electric potential computation. - Electric potential energy. - Relationship between electrostatic field and potential: gradient and equipotential surfaces.
3. Conductors and dielectrics - Electric properties of conductors. - Electrostatic induction; Faraday cage. - Capacitance; capacitor. - Capacitors in series and parallel; capacitor energy. - Dielectrics, electric polarization and dielectric permittivity. - D field and corresponding Gauss's law.
4. Electric current - Electric current. Current density field J. - Stationary conditions. Solenoidal property of the field J. - local form of the Ohm's law. - Ohm's law and Joule effect. - Resistors in series and parallel. - Electromotive field and electromotive force. - Charging and discharging of a capacitor. - Kirchhoff's circuit laws.
5. Magnetic field - Magnetic interactions. - Magnetic induction field B; Lorentz force. - Biot-Savart law. - Magnetic force on a current carrying conductor. - Torque on a current carrying rectangular coil in a magnetic field. - Charged particle motion in a magnetic field. - Mass spectrometer and velocity selector. - Solenoidal property of the field B; Gauss's law for the magnetic field.
6. Magnetic field sources - Magnetic field of a current. - Ampère-Laplace law applications: straight wire, circular coil. - Forces between current carrying wires. - Ampère's circuital law (in integral form) and applications. - Magnetic properties of matter: diamagnetic, paramagnetic and ferromagnetic materials. - H field and its circulation integral.
7. Electromagnetic induction - Faraday's law. Lenz's law. - Induced and motional Electromotive force. - Inductance. Charging and discharging of an inductor. - Magnetic energy. - Mutual inductance. - Ampere-Maxwell's law. Displacement current. - Maxwell equations in integral form.
( reference books)
P. Mazzoldi, M. Nigro, C. Voci, "Elementi di Fisica. Vol. II: Elettromagnetismo - Onde", seconda edizione, Edises, Napoli
|
6
|
FIS/01
|
54
|
-
|
-
|
-
|
Basic compulsory activities
|
ITA |
20802115-1 -
FISICA I MODULO I
(objectives)
THE COURSE INTRODUCES THE SCIENTIFIC METHOD, PRESENTS NEWTON'S MECHANICS AND THE MAIN ELECTRIC AND MAGNETIC PHENOMENA, TOGETHER WITH THE PERTINENT LAWS. THE STUDENT BECOMES FAMILIAR WITH THE BASIC MODELS OF CLASSICAL PHYSICS AND, IN PARTICULAR, WITH SUCH CONCEPTS AS PHYSICAL QUANTITY, FIELD, CONSERVATION LAW. THE STUDENT IS ABLE TO APPLY THE ABOVE CONCEPTS TO THE SOLUTION OF SIMPLE PROBLEMS BY MEANS OF APPROPRIATE ANALYTICAL PROCEDURES.
|
6
|
FIS/01
|
54
|
-
|
-
|
-
|
Basic compulsory activities
|
ITA |
20802116 -
FUNDAMENTALS OF CHEMISTRY
(objectives)
THE COURSE AIMS TO PROVIDE STUDENTS WITH THE TOOLS NECESSARY TO FRAME IN A LOGICAL AND SEQUENTIAL WAY, NOT MERELY DESCRIPTIVE, THE MAIN CHEMICAL AND PHYSICO-CHEMICAL PHENOMENA RELATED TO THE MICROSCOPIC AND MACROSCOPIC BEHAVIOR OF MATTER.
Group:
CANALE 2
-
Derived from
20802116 CHIMICA in INGEGNERIA MECCANICA (DM 270) L-9 CANALE 2 SOTGIU GIOVANNI
( syllabus)
Atom Structure: orbitals, poly-electron atoms, periodic table; covalent bond, delocalized bond. Mass relationship in chemical reactions; redox and oxidation number. Solids: metallic crystal, ionic crystal, molecular crystal, covalent crystal. Gases: the ideal gas law, partial pressures. Thermodynamics: nature and type of energy, the zero law of T.D., heat capacity, the first law of TD and Enthalphy, the second law of TD, entropy and free energy, equilibrium conditions. Liquids: phase change, phase diagrams. Chemical equilibrium: the equilibrium constant and the equilibrium law Properties of liquid solutions: concentration units, the Raoult law and distillation, colligatives properties and freezing diagram, electrolytes. Solutions of strong and weak electrolytes. Acids and bases, pH; Salt hydrolysis; buffer solutions. Elettrochemistry
( reference books)
Lecture notes o Depaoli - Chimica Generale ed Inorganica - Ed. Ambrosiana o Silvestroni, Rallo - Problemi di Chimica Generale - Ed. Masson o Palmisano, Schiavello – Fondamenti di Chimica - EDISES
Group:
CANALE 3
-
Derived from
20802116 CHIMICA in INGEGNERIA MECCANICA (DM 270) L-9 CANALE 3 SOTGIU GIOVANNI
( syllabus)
Atom Structure: orbitals, poly-electron atoms, periodic table; covalent bond, delocalized bond. Mass relationship in chemical reactions; redox and oxidation number. Solids: metallic crystal, ionic crystal, molecular crystal, covalent crystal. Gases: the ideal gas law, partial pressures. Thermodynamics: nature and type of energy, the zero law of T.D., heat capacity, the first law of TD and Enthalphy, the second law of TD, entropy and free energy, equilibrium conditions. Liquids: phase change, phase diagrams. Chemical equilibrium: the equilibrium constant and the equilibrium law Properties of liquid solutions: concentration units, the Raoult law and distillation, colligatives properties and freezing diagram, electrolytes. Solutions of strong and weak electrolytes. Acids and bases, pH; Salt hydrolysis; buffer solutions. Elettrochemistry
( reference books)
Lecture notes o Depaoli - Chimica Generale ed Inorganica - Ed. Ambrosiana o Silvestroni, Rallo - Problemi di Chimica Generale - Ed. Masson o Palmisano, Schiavello – Fondamenti di Chimica - EDISES
Group:
CANALE 4
-
Derived from
20802116 CHIMICA in INGEGNERIA MECCANICA (DM 270) L-9 CANALE 4 DE SANTIS SERENA
( syllabus)
Atom Structure: orbitals, poly-electron atoms, periodic table; bonds in chemistry (Lewis theory and VSEPR, Valence bond theory and hybridization); delocalized bond.
Mass relationship in chemical reactions; redox and oxidation number.
Solids: metallic, ionic, covalent and molecular crystals (weak bonds: van der Waals and hydrogen bond)
Gases: the ideal gas law, gas mixture, Dalton law, partial pressures.
Thermodynamics: nature and type of energy, the zero law of T.D., heat capacity, the first law of TD and Enthalphy. Calorimetry and thermochemistry. Born-Haber cycle; Carnot cycle. The second law of TD, Kelvin and Clausius statements, entropy and free energy, equilibrium conditions.
Liquids: saturation vapor pressure, Clapeyron law (thermodynamic demonstration), phase change, phase diagrams. Variance.
Chemical equilibrium: the equilibrium constant and the equilibrium law, heterogeneous equilibrium, thermal dissociation and dissociation degree.
Properties of liquid solutions: concentration units, the Raoult law and distillation, colligatives properties and freezing diagram, electrolytes. Arrhenius, Brönsted and Lewis acids and bases; pH; determination of pH for acidic and basic solutions, salt solutions, buffers.
Electrochemistry: electrical conductors (primary and secondary), Nernst’s equation, electrode potentials. Electrochemical cells: electrolytic cells, galvanic cells (primary and secondary), electrolysis, corrosion.
( reference books)
Brown - LeMay CHEMISTRY, THE CENTRAL SCIENCE Pearson
|
9
|
CHIM/07
|
81
|
-
|
-
|
-
|
Basic compulsory activities
|
ITA |
Optional group:
comune Orientamento unico A SCELTA DELLO STUDENTE ING CIVILE - (show)
|
12
|
|
|
|
|
|
|
|
20801626 -
DESIGN
(objectives)
PROVIDING ESSENTIAL KNOWLEDGE AND SKILLS FOR TECHNICAL DRAWING
|
6
|
ICAR/17
|
48
|
-
|
-
|
-
|
Elective activities
|
ITA |
20801671 -
ELECTROTECHNICS
(objectives)
THE COURSE OBJECTIVE IS TO PROVIDE AT STUDENTS SUITABLE LECTURES FOR AN INTRODUCTION TO THE ELECTRICAL ENGINEERING.
-
Derived from
20801671 ELETTROTECNICA in INGEGNERIA CIVILE (DM 270) L-7 N0 SALVINI ALESSANDRO
( syllabus)
Electrical Engineering
1 Electric Circuits 2 Kirchhoff laws, Bipoles, Electric Power 3 Node Method and Loop Method 4 Time domain 1st and 2nd Order Circuits 5 Sinusoidal Steady State Circuits: Phasors 6 Three phjase System Basics, Rotating Magnetic Field 7 Electrical Lines 8. Magnetic Circuits, Power Transformers and Measurement Transformers 9 Electromechanics Energy Conversion; Basics on Power Electronics 10 Protection and Swithcing Devices, Short Circuit currents in Low Voltage Systems, Thermal and Mechanical Effects 11 Ground Systems 12 Electrical Safety Basics 13 Basics on Renewable Energies.
( reference books)
Fundamentals of Electrical Engineering - Dr. Yaduvir Singh,Mandhir Verma. Laxmi Publications (December 1, 2015)
|
6
|
ING-IND/31
|
54
|
-
|
-
|
-
|
Elective activities
|
ITA |
20801672 -
ENVIRONMENTAL TECHNICAL PHYSICS
(objectives)
THE COURSE AIMS AT PROVIDING THE KNOWLEDGE NECESSARY TO EVALUATE HEAT TRANSFER PROCESSES (CONDUCTION, CONVECTION, RADIATION) BETWEEN BODIES AND INSIDE A BODY, AS WELL AS THE TEMPERATURE VARIATIONS THESE PROCESSES CAUSE. ANOTHER AREA IS THAT OF INDOOR THERMAL COMFORT.
-
Derived from
20801672 FISICA TECNICA AMBIENTALE in INGEGNERIA CIVILE (DM 270) L-7 N0 ASDRUBALI FRANCESCO
( syllabus)
1. Heat transfer Conduction. Thermal fields. Postulate and Fourier equation. Steady state wall. Fourier wall. Convection. Phenomenological analysis. Boundary layer. Natural and forced convection. Dimensional analysis method. Reynolds, Prandtl, Grashof and Nusselt numbers. Radiation. Radiant energy: definitions, properties, absorption coefficient. Emission and absorption properties of condensed bodies. Principle of Kirchhoff. Laws of the black body. Radiation properties of the bodies. Greenhouse effect. Heat exchange between facing flat surfaces. Radiation shields. Applications. Adduction. Multi-layer flat wall between two fluids. Transmittance. Wall cavities. Circuits for heat distribution. Matt and glazed walls exposed to solar radiation. Insulating materials. Solar Energy. Characteristics of solar radiation. Devices for solar energy capitation (flat panels and parabolic-cylindrical systems) and evaluation of their performance.
2. Thermodynamics Definitions: thermodynamic systems, equilibrium, transformations. Clapeyron plan. Zero Principle. Temperature measurement. First Principle. Thermal machines. Second principle. Entropy and entropic plan. Reversibility. Entropy and irreversibility. Properties of Matter. Aggregation states. State diagram of a pure substance. Properties of two-phase mixtures. Perfect gases. Van der Waals Fluid. Principle of corresponding states. State equations. Phase diagrams: entropic, enthalpic, refrigerating diagram. Open thermodynamic systems. Energy equation and applications in steady state. Reversible work of an open system. Continuity equation and Bernoulli equation. Thermal machines. Advantages and applications of steam machines. Rankine cycle. Rankine-Hirn cycle. Systems with turbine expanders. The regeneration of the heat and steam extractions. Refrigerating machines. Vapour compression machines. Reverse Rankine cycle. Efficiency. Irreversibility. Refrigerants. Compression heat pumps. Absorption machines: operating principle.
Air conditioning. Atmospheric air. Psychrometric variables. The ASHRAE psychrometric chart. Thermal comfort. Psychrometric processes. Air treatments. Description of an air conditioner. Regulation. Installations
3. Acoustics Physical Acoustics: acoustic parameters, sound fields, sources and spectra. Sound-absorbing materials. Sound insulating structures. Psyco-acoustics. The hear: hearing physiology, hearing sensation; quality of sensation. Audiograms. The sound level meter. Noise and noise disturbance. Phonometric measurements. Elements of room acoustics: Reverberation, Sabine theory. Room acoustics design and correction. Actions for noise mitigation.
4. Lighting Technique Photometry. The eye. The quality of vision. The visible radiant energy. The visibility curve. Visibility curve construction. Definition of photometric quantities. Artificial light sources. Features of a lighting source. Classification of lamps. Photometric curves. Elements of lighting engineering. Indoors and outdoors artificial lighting. The total flux method. Applications. Daylighting.
( reference books)
Recommended reading: 1) M. Felli: Lezioni di Fisica Tecnica 1: Termodinamica, Macchine, Impianti, Nuova edizione a cura di Francesco Asdrubali, Morlacchi editore, 2009. 2) M. Felli: Lezioni di Fisica Tecnica 2: Trasmissione del Calore, Acustica, Tecnica dell’Illuminazione, Nuova edizione a cura di Cinzia Buratti, Morlacchi editore, 2010.
|
6
|
ING-IND/11
|
54
|
-
|
-
|
-
|
Elective activities
|
ITA |
20802129 -
Fundamentals of Business and Accounting for students of Engineering
(objectives)
THE MAIN GOAL OF THE COURSE IS TO DRIVE THE ENGINEERING STUDENTS THROUGH THE ORGANIZATION OF THE FIRMS, BY DEFINING THEIR LOGICAL BOUNDARIES AND THEIR MAIN CHARACTERISTICS. AT THE END OF THE LESSONS, THE STUDENTS ARE EXPECTED TO BE ABLE TO KNOW THE INSTITUTIONAL MATTERS OF THE FIRMS (BOTH PROFIT ORIENTED AND NOT FOR PROFIT), THEIR OBJECTIVES AND THE MAIN WAYS THEY HAVE TO PURSUE IN ORDER ACHIEVE THEIR OWN GOALS.
-
Derived from
20802129 ELEMENTI DI ECONOMIA AZIENDALE PER INGEGNERIA in INGEGNERIA CIVILE (DM 270) L-7 N0 REGOLIOSI CARLO
( syllabus)
1. Business organizations as Economic Operators 2. The distinction between the economic decision maker and the legal representative of a business 3. Different types of business organizations 4. For-profit entities and their characteristics 5. Business organizations in the private and public sectors 6. Various types of Business Combinations 7. Theleological issues characterising for profit firms 8. Remuneration schemes for production factors 9. Business risk, income and profits 10. Financing schemes and capital budgeting 11. The choice between equity, debt and self-financing-related issues 12. Business ethics and adequacy of income 13. Markets and the forecast of customer demand 14. Production: some issues 15. Investment choices and policies 16. Internal control system: some issues 17. Equity, management and income: logical issues and accounting treatment policies
( reference books)
Troina G., Elementi di Economia aziendale, CISU, ult. ed. Regoliosi C., d’Eri A., Argomenti scelti di Economia Aziendale, Nuova Cultura, ult. ed.
|
6
|
ING-IND/35
|
54
|
-
|
-
|
-
|
Elective activities
|
ITA |
|