Course
|
Credits
|
Scientific Disciplinary Sector Code
|
Contact Hours
|
Exercise Hours
|
Laboratory Hours
|
Personal Study Hours
|
Type of Activity
|
Language
|
Optional group:
comune Orientamento unico AFFINI INTEGRATIVE - (show)
|
12
|
|
|
|
|
|
|
|
20801616 -
APPLIED GEOLOGY
(objectives)
IT PRESENTS AN OVERVIEW OF EARTH SCIENCES, ILLUSTRATING THE BASIC CONCEPTS OF GEOLOGY: THE FORM, MATERIALS, INTERNAL DYNAMICS, GEOLOGICAL CYCLES. IT PROVIDES THE BASIC TOOLS FOR READING AND INTERPRETATION OF GEOLOGICAL MAPS AT DIFFERENT SCALES. IT PROVIDES THE SKILLS NECESSARY TO INTERPRET THE GEOLOGICAL SURVEY. IT PROVIDES INFORMATION RELATING TO NATURAL HAZARDS, NATURAL RESOURCES AND ENVIRONMENTAL IMPACT
-
MAZZA ROBERTO
( syllabus)
The course program includes the presentation and discussion of the following topics: Introduction to Geology: the uniqueness of planet Earth; aspects of geology, the Earth's crust - the processes affecting the surface (the model of the Earth's relief, the sedimentary processes, sedimentary rocks), the body of the Earth - the internal process (the interior of the Earth, the earthquakes, volcanic phenomena, igneous rocks, metamorphic rocks; lithogenetic cycle, plate tectonics) deformation of the crust (lithological succession, the deformation of rocks, the geometry of geological bodies ). The "craft" of the geologist: the geological survey (preliminary research, materials and methods, analysis and interpretation of geological maps, reading and interpretation of thematic maps), the geological-technical survey (principal physical and mechanical properties of earth and rocks, the geological exploration of subsoil). Engineering Geology: Slope instabilities; hydrogeology; study of the geological context related to planning issues (the geological hazard); first intervention on the territory; redevelopment (urban geology.)
( reference books)
JOHN P. GROTZINGER, THOMAS H. JORDAN – Capire la Terra – Edizione italiana a cura di Elvidio Lupia Palmieri e Maurizio Parotto – Zanichelli, Bologna LAURA SCESI, MONICA PAPINI, PAOLA GATTINONI – Principi di Geologia applicata – Casa Editrice Ambrosiana, Milano VARIOUS MATERIAL PROVIDED BY THE TEACHER
|
6
|
GEO/05
|
54
|
-
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20801617 -
MATERIALS FOR CIVIL ENGINEERING
(objectives)
THE AIM OF THE CLASS IS TO ACQUIRE THE KNOWLEDGE OF THE MATERIALS USED IN CIVIL ENGINEERING, TO PERFORM TESTS ON MATERIALS AND TO COMPREHEND THE ENVIRONMENTAL IMPACT FROM THEIR USE.
-
LANZARA GIULIA
( syllabus)
Introduction to Material Science and Technologies, snap-shots of continuum mechanics, Atomic bonds, Dislocations, Mechanical behavior of materials, Fracture, Materials for Civil Engineering (metals, polymers, concrete, composites, wood), Standards, An overview of new materials for Civil Engineering and of the new frontiers (intelligent materials, self-healing materials, nanocomposites etc.), Laboratory experience (Multifunctional Materials Laboratory)
( reference books)
lectures given during the course
W.D. Callister, Scienza e Ingegneria dei Materiali
|
6
|
ING-IND/22
|
54
|
-
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20801621 -
ENVIRONMENTAL HEALTH ENGINEERING
(objectives)
The main scope of the course is to provide students with the basic knowledge of environmental engineering. The course belongs to the three-year degree in Civil Engineering, whose aim is to prepare students in civil engineering by providing tools for the design, construction, maintenance and management of civil structures and infrastructures, such as buildings, bridges, tunnels, transport systems, hydraulic works and land protection. Road Materials is also a course of the master degrees in Road Infrastructures and Transport and Civil Engineering for Protection from Natural Risks, whose objective is training a highly professional figure in civil engineering with specific knowledge and skills in road infrastructures design and management and transportation issues and protection from hydrogeological and seismic risks, respectively. Within such framework, the course aims at providing students with the basic knowledge and understanding about 1) the biotic and abiotic environment, with references to ecology, chemistry and biology principles; 2) the reference environmental legislation; 3) water, atmosphere and soil quality parameters; 4) the processes of diffusion of pollutants in the environment; 5) treatment techniques. Upon successful completion of the course, students will be able to 1) evaluate the quality parameters of water, atmosphere and soil in relation to the current legislation 2) analyze the different engineering techniques of water, atmosphere and soil treatment in function of the type of pollutant; 3) basic knowledge of the integrated management of urban solid waste.
-
FIORI ALDO
( syllabus)
Chemestry and biology principles • Ecology • Water environment: water quality, water pollution, potabilization plants, waste water, waste water treatments. • Air pollution: pollutants and system for emission treatment • Solid waste: integrated waste management system, waste characteristics, collection systems, recovery operations, reuse and recycling, final disposal in a controlled landfill. • Reclamation of contaminated sites • Reference national laws (D.Lgs. 152/2006)
( reference books)
Ingegneria sanitaria-ambientale, Carlo Collivignarelli, Giorgio Bertanza, Città studi edizioni, 2012
|
6
|
ICAR/03
|
54
|
-
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20801979 -
GEOMATICS
(objectives)
FORMATIVE AIMS TO PROVIDE BASIC KNOWLEDGE ON MAJOR THEORETICAL, METHODOLOGICAL AND OPERATIONAL ISSUES INVOLVED IN SURVEYING, SO THAT THE STUDENT CAN ACQUIRE THE NECESSARY SKILLS TO DESIGN AND PERFORM A SURVEY AND TO PROCESS THE DATA RELATED TO IT. WE DISCUSS THE BASIC PRINCIPLES OF GEODESY AND CARTOGRAPHY, THE PRINCIPLES OF SURVEYING AND THE QUANTITIES THAT CAN BE MEASURED WITH THE TOPOGRAPHICAL INSTRUMENTS, BOTH TERRESTRIAL AND SATELLITE, THE SURVEY METHODS AND THE TREATMENT OF OBSERVATIONS.
|
6
|
ICAR/06
|
48
|
-
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20810070 -
SUSTAINABILITY AND ENVIRONMENTAL IMPACT
(objectives)
TO PROVIDE STUDENTS WITH KNOWLEDGE ON ENVIRONMENTAL IMPACTS OF HUMAN ACTIVITIES, TO CLASSIFY THE IMPACTS, TO ILLUSTRATE THE CONCEPT OF SUSTAINABILITY, TO DESCRIBE THE EVALUATION PROCEDURES OF ENVIRONMENTAL IMPACT AND ENVIRONMENTAL CERTIFICATION PROTOCOLS. ILLUSTRATE , THROUGH SIGNIFICANT CASE STUDIES, EXAMPLES OF ENVIRONMENTAL IMPACT ASSESSMENT AND OF IMPACTS MITIGATION.
-
Derived from
20810070 SOSTENIBILITA' E IMPATTO AMBIENTALE in Ingegneria elettronica per l'industria e l'innovazione LM-29 ASDRUBALI FRANCESCO
( syllabus)
Interdisciplinary characters of energy problems. Definition of the quantities and energy indices. Consumption, reserves and forecasts: the world's energy market, the Italian energy situation. Sustainable Development The international conference on climate and the environment: the Kyoto Protocol, the post-Kyoto, COP 21. The EU directives on energy, environment and climate. Sustainable development: definition, tools and methods. The Aalborg Chart, the Agenda 21 processes, the Covenant of Mayors. Environmental pollution environmental impact of energy systems, production and transport infrastructure. Air pollution: sources, pollutants, legislation, techniques for emissions control. The global pollution: acid rains, ozone depletion, greenhouse effect. Other forms of pollution: thermal pollution, noise, electromagnetic pollution environmental impact assessments The environmental impact assessment: legislation, procedures, methodologies, content and stages., Strategic Environmental Assessment. environmental footprint environmental footprint assessment procedures: Life Cycle Assessment; Social Life Cycle Assessment. Carbon Footprint and Water Footprint. environmental certification protocols environmental certification of productions: ISO 14000, EMAS, ecolabel. environmental sustainability protocols of buildings: LEED; BREEAM; ITHACA. Protocols of sustainability of University certification: Green Metric The Green Economy Definitions, areas of intervention, the Green Economy Manifesto. Outlines of incentive mechanisms in the Green Economy. Costs / benefits analysis. Applications and case studies Examples of environmental impact assessments and good sustainability practices.
( reference books)
Power point presentations will be made available in the Rome Tre Moodle system, as well as a list of suggested books
|
6
|
ING-IND/11
|
48
|
-
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20810106 -
SAFETY AT WORK AND ENVIRONMENTAL DEFENCE
(objectives)
Safety at work and environmental defence aims at providing knowledge and competences on safety at work in civil engineering construction activities, with specific focus on rules and laws and on the professional roles in the field. At the end of the course students shall be able of acting as coordinators safety measurements design and implementation according to the Italian laws.
-
ALFARO DEGAN GUIDO
( syllabus)
LEGAL FORM The Legislative Decree of the Government 81/2008 (Tit. I) and BS OHSAS 18001: 07, as basic legislation on safety and health at work. The DVR (Risk Assessment Document, art. 28) and art. 30, as tools for the design of the Company Management System on Health and Safety (SGSS). The SGSS and legislative compliance (Legislative Decree no. 81.08), continuous improvement and the "PDCA" principle of the Deming wheel. Training, awareness and competence. Consultation and communication. Operational control. Emergency preparedness and response. System performance, measurement, monitoring, audit and improvement. European regulations and their value; good technical standards; product directives. BS OHSAS 18001: 07 is the implementation of the SGSS as an effective tool to reduce the risks associated with health and safety in the workplace for employees, customers and interested parties. Data and case studies. Applications. The specific health and safety legislation on construction sites and work at height, the figures concerned, the Competent Bodies and the disciplinary discipline (Tit. IV Legislative Decree 81/08). The framework law on public works. Risk assessment techniques. Insights on Check List Analysis, JSA, FAST (Method of functional spaces), HAZOP, FMEA, FTA techniques. Applications and case studies. Exercises on the application of the BS OHSAS Standard Requirements to specific cases connected to mobile and temporary construction sites. System Audit Methods and Conformity Assessment. The "Production" method as a conformity assessment tool. Case studies, judgments on the application of the Safety Legislation. Literature and interpretation of incidental causes for historical events.
TECHNICAL FORM Construction site safety and organization (also relating to documentary obligations); specific treatment of health and safety risks on site (occupational diseases, excavations, demolitions, underground and tunnel works, noise, vibrations, environmental remediation, asbestos, manual handling of loads (MMdC), fire, etc.) ; prevention and protection measures, organizational procedures, risk prevention techniques during assembly, disassembly and installation of structures, vehicles and construction elements; the risk of falling from above, scaffolding and temporary works. Insights into occupational diseases related to work carried out in mobile and temporary construction sites; Accident material agents, exposure assessment methods. Practical applications. NIOSH and OCRA techniques for MMdC risk assessment and biomechanical overload of the upper limbs. Assessment of noise and vibration risk: exercises and applications; the asbestos risk, the remediation / demolition / safe treatment of MCA. Scaffolding and temporary works, construction techniques and safe management. Study cases.
METHODOLOGICAL / ORGANIZATIONAL / PRACTICAL MODULE The security and coordination plan (contents, criteria and methods, examples and project); the replacement safety plan; communication and cooperation techniques; the Operational Safety Plan and the Work Dossier; processing methods of the Pi.M.U.S. (Assembly, Use, Disassembly of scaffolding); methodological criteria for processing and managing the documentation; estimate of safety costs on site. Examples of PSC, area risk analysis, interference analysis and evaluation, the importance of planning and organization; tutorials and applications. Drafting of Operational Safety Plans (POS): practical meaning and differences with DVRs pursuant to art. 28, the evaluation of risks from interference and differences with the DUVRI (art. 26 Legislative Decree 81/08); exercises and case studies. Examples of Substitute Safety Plans (PSS); examples of Dossiers and practical applications based on the drafting of specific PSCs; judgments and sanctions regarding construction site safety; role simulations (Coordinator).
( reference books)
Lecture notes, texts, reference laws distributed in the classroom by the teacher
|
6
|
ING-IND/28
|
54
|
-
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
|
20802078 -
TRANSPORT TECHNOLOGY AND ECONOMICS
(objectives)
Transport Technology and Economics is a course of the Transportation sector, given within the three years of the Degree in Civil Engineering. This degree aims at providing tools for the design, construction, maintenance and management of civil structures and infrastructures, such as buildings, bridges, tunnels, transport systems, hydraulic works and land protection. As part of the Bachelor's degree program, the Transport Technology and Economics course provides the fundamental skills for the design, construction and management of the main transport systems. The technical efficiency of the system and its interaction with the other components are developed both in technical terms and in terms of economic convenience. Students will acquire expertise in transport technology and economics such as 1) Theory of traffic flow, 2) propulsion units, 3) Vehicle motion, 4) wheelset components, 5) electric and diesel traction systems, 6) brake systems, 7) railway infrastructure, 8) commercial speed. At the end of the course the students will be able to 1) analyse and design the functional characteristics of the elements of a rail- system (infrastructures and services), 2) identify the interactions between vehicle and infrastructure; 3) computation of forces acting on a vehicle, 4) identify flow diagrams, 5) perform a cost-benefit analysis with regard to a transport system.
|
9
|
ICAR/05
|
72
|
-
|
-
|
-
|
Core compulsory activities
|
ITA |
20802076 -
ROADS, RAILWAYS AND AIRPORTS
(objectives)
Roads Railways Airports is a course of the Degree in Civil Engineering. This degree aims at providing tools for the design, construction, maintenance and management of civil structures and infrastructures, such as buildings, bridges, tunnels, transport systems, hydraulic works and land protection. The course is aimed at providing students with the basic theories for the physical and functional characterization of different transport infrastructures such as roads, railways and airports. Social, urbanistic and environmental issues are discussed as well as an in-depth analysis of the Italian road design regulation. At the end of the course the students will be able to: 1) handle the several characteristics and design principles of the different transport infrastructures; 2) analyze the Italian road design rule; 3) identify the best technical and economical solution for designing a transport infrastructure.
-
BENEDETTO ANDREA
( syllabus)
Main principles of transportation infrastructures design Physical and functional characteristics of transportation infrastructures Constraints and limits for design Transportation and mobility demand Road transversal section design Geometrical design Horizontal and Vertical aligment Safety Road material and pavement design principles Road hydraulics Railways Airports
( reference books)
A. Benedetto (2015) "Strade Ferrovie Aeroporti." UTET Università. De Agostini Scuola. Novara
|
9
|
ICAR/04
|
72
|
-
|
-
|
-
|
Core compulsory activities
|
ITA |
20810100 -
HYDRAULICS
(objectives)
Hydraulics is a class aimed at providing a strong basic knowledge on hydraulics, ranging from a qualitative description of the fluid behaviour to the formulation of quantitative models based on continuum fluid mechanics. Such models will be deduced from classical mechanics, by properly distinguishing between rigid and deformable bodies. Simple laws will be derived, which can be used to tackle hydrostatic problem, as well as normal and permanent flows. Hydraulics belongs to the “Ingegneria Civile“ Course, whose aim is to prepare students in civil engineering topics such as hydraulics, structures and transportation infrastructures, and train them to their design, construction, management and maintenance. Within such framework, Hydraulics aims at formulating the fundamental laws upon which the technical formulae employed in the design practice are established. Upon successful completion of the course, students will be able to: 1) qualitatively examine an phenomenon pertaining to hydraulics and classify it based on its kinematic and dynamic feature; 2) decide which class of models best approximates the observed behaviour; 3) quantitatively solve the proposed model for the quantities which take on technical interests.
|
|
-
Modulo I
(objectives)
Hydraulics is a class aimed at providing a strong basic knowledge on hydraulics, ranging from a qualitative description of the fluid behaviour to the formulation of quantitative models based on continuum fluid mechanics. Such models will be deduced from classical mechanics, by properly distinguishing between rigid and deformable bodies. Simple laws will be derived, which can be used to tackle hydrostatic problem, as well as normal and permanent flows. Hydraulics belongs to the “Ingegneria Civile“ Course, whose aim is to prepare students in civil engineering topics such as hydraulics, structures and transportation infrastructures, and train them to their design, construction, management and maintenance. Within such framework, Hydraulics aims at formulating the fundamental laws upon which the technical formulae employed in the design practice are established. Upon successful completion of the course, students will be able to: 1) qualitatively examine an phenomenon pertaining to hydraulics and classify it based on its kinematic and dynamic feature; 2) decide which class of models best approximates the observed behaviour; 3) quantitatively solve the proposed model for the quantities which take on technical interests.
-
PRESTININZI PIETRO
( syllabus)
- fluid continuum model - body forces and surface forces - Cauchy stress tensor - kinematics - velocity and acceleration, pathlines and streamlines - conservation laws: differential and integral form - hydrostatics - ideal fluid Bernoulli's theorem - uniform flows: one dimensional dissipative model - pipe flow
( reference books)
Theory: Citrini, Noseda – Idraulica - Ed. Ambrosiana Mossa, Petrillo – IDRAULICA. Ed. Casa Editrice Ambrosiana, Milano
Applications: Alfonsi, Orsi – Problemi di idraulica e meccanica dei fluidi. Ed. Casa Editrice Ambrosiana, Milano
|
6
|
ICAR/01
|
48
|
-
|
-
|
-
|
Core compulsory activities
|
ITA |
Optional group:
comune Orientamento unico A SCELTA DELLO STUDENTE ING CIVILE - (show)
|
12
|
|
|
|
|
|
|
|
20801616 -
APPLIED GEOLOGY
(objectives)
IT PRESENTS AN OVERVIEW OF EARTH SCIENCES, ILLUSTRATING THE BASIC CONCEPTS OF GEOLOGY: THE FORM, MATERIALS, INTERNAL DYNAMICS, GEOLOGICAL CYCLES. IT PROVIDES THE BASIC TOOLS FOR READING AND INTERPRETATION OF GEOLOGICAL MAPS AT DIFFERENT SCALES. IT PROVIDES THE SKILLS NECESSARY TO INTERPRET THE GEOLOGICAL SURVEY. IT PROVIDES INFORMATION RELATING TO NATURAL HAZARDS, NATURAL RESOURCES AND ENVIRONMENTAL IMPACT
-
Derived from
20801616 GEOLOGIA APPLICATA in Ingegneria civile L-7 N0 MAZZA ROBERTO
( syllabus)
The course program includes the presentation and discussion of the following topics: Introduction to Geology: the uniqueness of planet Earth; aspects of geology, the Earth's crust - the processes affecting the surface (the model of the Earth's relief, the sedimentary processes, sedimentary rocks), the body of the Earth - the internal process (the interior of the Earth, the earthquakes, volcanic phenomena, igneous rocks, metamorphic rocks; lithogenetic cycle, plate tectonics) deformation of the crust (lithological succession, the deformation of rocks, the geometry of geological bodies ). The "craft" of the geologist: the geological survey (preliminary research, materials and methods, analysis and interpretation of geological maps, reading and interpretation of thematic maps), the geological-technical survey (principal physical and mechanical properties of earth and rocks, the geological exploration of subsoil). Engineering Geology: Slope instabilities; hydrogeology; study of the geological context related to planning issues (the geological hazard); first intervention on the territory; redevelopment (urban geology.)
( reference books)
JOHN P. GROTZINGER, THOMAS H. JORDAN – Capire la Terra – Edizione italiana a cura di Elvidio Lupia Palmieri e Maurizio Parotto – Zanichelli, Bologna LAURA SCESI, MONICA PAPINI, PAOLA GATTINONI – Principi di Geologia applicata – Casa Editrice Ambrosiana, Milano VARIOUS MATERIAL PROVIDED BY THE TEACHER
|
6
|
GEO/05
|
54
|
-
|
-
|
-
|
Elective activities
|
ITA |
20801617 -
MATERIALS FOR CIVIL ENGINEERING
(objectives)
THE AIM OF THE CLASS IS TO ACQUIRE THE KNOWLEDGE OF THE MATERIALS USED IN CIVIL ENGINEERING, TO PERFORM TESTS ON MATERIALS AND TO COMPREHEND THE ENVIRONMENTAL IMPACT FROM THEIR USE.
-
Derived from
20801617 MATERIALI PER L'INGEGNERIA CIVILE in Ingegneria civile L-7 N0 LANZARA GIULIA
( syllabus)
Introduction to Material Science and Technologies, snap-shots of continuum mechanics, Atomic bonds, Dislocations, Mechanical behavior of materials, Fracture, Materials for Civil Engineering (metals, polymers, concrete, composites, wood), Standards, An overview of new materials for Civil Engineering and of the new frontiers (intelligent materials, self-healing materials, nanocomposites etc.), Laboratory experience (Multifunctional Materials Laboratory)
( reference books)
lectures given during the course
W.D. Callister, Scienza e Ingegneria dei Materiali
|
6
|
ING-IND/22
|
54
|
-
|
-
|
-
|
Elective activities
|
ITA |
20801621 -
ENVIRONMENTAL HEALTH ENGINEERING
(objectives)
The main scope of the course is to provide students with the basic knowledge of environmental engineering. The course belongs to the three-year degree in Civil Engineering, whose aim is to prepare students in civil engineering by providing tools for the design, construction, maintenance and management of civil structures and infrastructures, such as buildings, bridges, tunnels, transport systems, hydraulic works and land protection. Road Materials is also a course of the master degrees in Road Infrastructures and Transport and Civil Engineering for Protection from Natural Risks, whose objective is training a highly professional figure in civil engineering with specific knowledge and skills in road infrastructures design and management and transportation issues and protection from hydrogeological and seismic risks, respectively. Within such framework, the course aims at providing students with the basic knowledge and understanding about 1) the biotic and abiotic environment, with references to ecology, chemistry and biology principles; 2) the reference environmental legislation; 3) water, atmosphere and soil quality parameters; 4) the processes of diffusion of pollutants in the environment; 5) treatment techniques. Upon successful completion of the course, students will be able to 1) evaluate the quality parameters of water, atmosphere and soil in relation to the current legislation 2) analyze the different engineering techniques of water, atmosphere and soil treatment in function of the type of pollutant; 3) basic knowledge of the integrated management of urban solid waste.
-
Derived from
20801621 INGEGNERIA SANITARIA-AMBIENTALE in Ingegneria civile L-7 N0 FIORI ALDO
( syllabus)
Chemestry and biology principles • Ecology • Water environment: water quality, water pollution, potabilization plants, waste water, waste water treatments. • Air pollution: pollutants and system for emission treatment • Solid waste: integrated waste management system, waste characteristics, collection systems, recovery operations, reuse and recycling, final disposal in a controlled landfill. • Reclamation of contaminated sites • Reference national laws (D.Lgs. 152/2006)
( reference books)
Ingegneria sanitaria-ambientale, Carlo Collivignarelli, Giorgio Bertanza, Città studi edizioni, 2012
|
6
|
ICAR/03
|
54
|
-
|
-
|
-
|
Elective activities
|
ITA |
20801979 -
GEOMATICS
(objectives)
FORMATIVE AIMS TO PROVIDE BASIC KNOWLEDGE ON MAJOR THEORETICAL, METHODOLOGICAL AND OPERATIONAL ISSUES INVOLVED IN SURVEYING, SO THAT THE STUDENT CAN ACQUIRE THE NECESSARY SKILLS TO DESIGN AND PERFORM A SURVEY AND TO PROCESS THE DATA RELATED TO IT. WE DISCUSS THE BASIC PRINCIPLES OF GEODESY AND CARTOGRAPHY, THE PRINCIPLES OF SURVEYING AND THE QUANTITIES THAT CAN BE MEASURED WITH THE TOPOGRAPHICAL INSTRUMENTS, BOTH TERRESTRIAL AND SATELLITE, THE SURVEY METHODS AND THE TREATMENT OF OBSERVATIONS.
|
6
|
ICAR/06
|
48
|
-
|
-
|
-
|
Elective activities
|
ITA |
20810070 -
SUSTAINABILITY AND ENVIRONMENTAL IMPACT
(objectives)
TO PROVIDE STUDENTS WITH KNOWLEDGE ON ENVIRONMENTAL IMPACTS OF HUMAN ACTIVITIES, TO CLASSIFY THE IMPACTS, TO ILLUSTRATE THE CONCEPT OF SUSTAINABILITY, TO DESCRIBE THE EVALUATION PROCEDURES OF ENVIRONMENTAL IMPACT AND ENVIRONMENTAL CERTIFICATION PROTOCOLS. ILLUSTRATE , THROUGH SIGNIFICANT CASE STUDIES, EXAMPLES OF ENVIRONMENTAL IMPACT ASSESSMENT AND OF IMPACTS MITIGATION.
-
Derived from
20810070 SOSTENIBILITA' E IMPATTO AMBIENTALE in Ingegneria elettronica per l'industria e l'innovazione LM-29 ASDRUBALI FRANCESCO
( syllabus)
Interdisciplinary characters of energy problems. Definition of the quantities and energy indices. Consumption, reserves and forecasts: the world's energy market, the Italian energy situation. Sustainable Development The international conference on climate and the environment: the Kyoto Protocol, the post-Kyoto, COP 21. The EU directives on energy, environment and climate. Sustainable development: definition, tools and methods. The Aalborg Chart, the Agenda 21 processes, the Covenant of Mayors. Environmental pollution environmental impact of energy systems, production and transport infrastructure. Air pollution: sources, pollutants, legislation, techniques for emissions control. The global pollution: acid rains, ozone depletion, greenhouse effect. Other forms of pollution: thermal pollution, noise, electromagnetic pollution environmental impact assessments The environmental impact assessment: legislation, procedures, methodologies, content and stages., Strategic Environmental Assessment. environmental footprint environmental footprint assessment procedures: Life Cycle Assessment; Social Life Cycle Assessment. Carbon Footprint and Water Footprint. environmental certification protocols environmental certification of productions: ISO 14000, EMAS, ecolabel. environmental sustainability protocols of buildings: LEED; BREEAM; ITHACA. Protocols of sustainability of University certification: Green Metric The Green Economy Definitions, areas of intervention, the Green Economy Manifesto. Outlines of incentive mechanisms in the Green Economy. Costs / benefits analysis. Applications and case studies Examples of environmental impact assessments and good sustainability practices.
( reference books)
Power point presentations will be made available in the Rome Tre Moodle system, as well as a list of suggested books
|
6
|
ING-IND/11
|
48
|
-
|
-
|
-
|
Elective activities
|
ITA |
20810106 -
SAFETY AT WORK AND ENVIRONMENTAL DEFENCE
(objectives)
Safety at work and environmental defence aims at providing knowledge and competences on safety at work in civil engineering construction activities, with specific focus on rules and laws and on the professional roles in the field. At the end of the course students shall be able of acting as coordinators safety measurements design and implementation according to the Italian laws.
-
Derived from
20810106 SICUREZZA E ORGANIZZAZIONE DEL LAVORO IN CANTIERE in Ingegneria civile L-7 ALFARO DEGAN GUIDO
( syllabus)
LEGAL FORM The Legislative Decree of the Government 81/2008 (Tit. I) and BS OHSAS 18001: 07, as basic legislation on safety and health at work. The DVR (Risk Assessment Document, art. 28) and art. 30, as tools for the design of the Company Management System on Health and Safety (SGSS). The SGSS and legislative compliance (Legislative Decree no. 81.08), continuous improvement and the "PDCA" principle of the Deming wheel. Training, awareness and competence. Consultation and communication. Operational control. Emergency preparedness and response. System performance, measurement, monitoring, audit and improvement. European regulations and their value; good technical standards; product directives. BS OHSAS 18001: 07 is the implementation of the SGSS as an effective tool to reduce the risks associated with health and safety in the workplace for employees, customers and interested parties. Data and case studies. Applications. The specific health and safety legislation on construction sites and work at height, the figures concerned, the Competent Bodies and the disciplinary discipline (Tit. IV Legislative Decree 81/08). The framework law on public works. Risk assessment techniques. Insights on Check List Analysis, JSA, FAST (Method of functional spaces), HAZOP, FMEA, FTA techniques. Applications and case studies. Exercises on the application of the BS OHSAS Standard Requirements to specific cases connected to mobile and temporary construction sites. System Audit Methods and Conformity Assessment. The "Production" method as a conformity assessment tool. Case studies, judgments on the application of the Safety Legislation. Literature and interpretation of incidental causes for historical events.
TECHNICAL FORM Construction site safety and organization (also relating to documentary obligations); specific treatment of health and safety risks on site (occupational diseases, excavations, demolitions, underground and tunnel works, noise, vibrations, environmental remediation, asbestos, manual handling of loads (MMdC), fire, etc.) ; prevention and protection measures, organizational procedures, risk prevention techniques during assembly, disassembly and installation of structures, vehicles and construction elements; the risk of falling from above, scaffolding and temporary works. Insights into occupational diseases related to work carried out in mobile and temporary construction sites; Accident material agents, exposure assessment methods. Practical applications. NIOSH and OCRA techniques for MMdC risk assessment and biomechanical overload of the upper limbs. Assessment of noise and vibration risk: exercises and applications; the asbestos risk, the remediation / demolition / safe treatment of MCA. Scaffolding and temporary works, construction techniques and safe management. Study cases.
METHODOLOGICAL / ORGANIZATIONAL / PRACTICAL MODULE The security and coordination plan (contents, criteria and methods, examples and project); the replacement safety plan; communication and cooperation techniques; the Operational Safety Plan and the Work Dossier; processing methods of the Pi.M.U.S. (Assembly, Use, Disassembly of scaffolding); methodological criteria for processing and managing the documentation; estimate of safety costs on site. Examples of PSC, area risk analysis, interference analysis and evaluation, the importance of planning and organization; tutorials and applications. Drafting of Operational Safety Plans (POS): practical meaning and differences with DVRs pursuant to art. 28, the evaluation of risks from interference and differences with the DUVRI (art. 26 Legislative Decree 81/08); exercises and case studies. Examples of Substitute Safety Plans (PSS); examples of Dossiers and practical applications based on the drafting of specific PSCs; judgments and sanctions regarding construction site safety; role simulations (Coordinator).
( reference books)
Lecture notes, texts, reference laws distributed in the classroom by the teacher
|
6
|
ING-IND/28
|
54
|
-
|
-
|
-
|
Elective activities
|
ITA |
20801626 -
DRAWING
(objectives)
PROVIDING ESSENTIAL KNOWLEDGE AND SKILLS FOR TECHNICAL DRAWING
-
Derived from
20801626 DISEGNO in Ingegneria civile L-7 N0 BIANCHINI CIAMPOLI LUCA
( syllabus)
Drawing" for designers is the equivalent of the score for musicians: a set of encoded and scientific signs enabling the design and the accurate realization of the work. This course aims to provide capabilities and tools to future engineers in order to design and devise their projects by means of the "notation" of technical drawing. After an early phase introducing the general issues of traditional or “analogical” drawing, the course will continue using digital technology, specifically CAD systems. The representation of civil engineering project in its various phases (survey, analysis, design, implementation, etc.) poses nontrivial problems especially when realized in numeric environment. The several features of a project match different sets of data that, according to the given requirements, coexist differently in the digital space. These data can be separately, jointly or selectively managed depending on the need. These informations are processed not in a static and linear way but in a dynamic and multi polar one. Therefore it is mandatory to develop a clear vision of the digital technique leading to a correct method, overcoming the empirical improvisation of neophytes and self-taught people. The purpose of this course is to provide students with a proper "Philosophy of use" of drawing and its related computational tools, in order to rationally and properly handle all the digital processes related to the project and its representation. It is mandatory to sign up for the course within the first 3 lessons and warmly suggested to attend lessons. There will be some intermediate test before the final one which shall not be done without the positive results of the previous.
|
6
|
ICAR/17
|
48
|
-
|
-
|
-
|
Elective activities
|
ITA |
|