Course | Credits | Scientific Disciplinary Sector Code | Contact Hours | Exercise Hours | Laboratory Hours | Personal Study Hours | Type of Activity | Language | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20402166 -
HYDROGEOLOGY
(objectives)
ABILITY TO LOCATE, QUANTIFY AND MANAGE GROUNDWATER RESOURCES; ABILITY TO PRODUCE HYDROGEOLOGICAL MAPS; ABILITY TO DESIGN WORKS COLLECTION OF SPRINGS AND UNDERGROUND AQUIFERS; ABILITY TO PRODUCE HYDROGEOLOGICAL SCHEMES AND/OR HYDROGEOLOGICAL MODELS.
-
MASTRORILLO LUCIA
(syllabus)
Aquifers: porosity and effective porosity, primary and secondary porosity. Recharge area, aquiclud and
(reference books)
aquitard. Porous, fractured and karst aquifers. Confined and unconfined aquifers. Shallow and basal aquifers. River - aquifer interaction. Coastal aquifers. Groundwater resources and riserves Regional hydrogeology (Central Italy): Hydrogeological complexes. Comparison between different hydrodynamic attitude: Umbria Marchean domain, Latium Abruzzi domain, volcanic domain. Faults role in hydrogeology. Main springs in the Central Italy Spring: main spring classifications. Spring discharge (recession curves). Spring protection areas. Base Flow of river discharge: Hydrograph basin vs hydrogeological basin Water budget: hydrological cycle. Water budget of hydrographic basin. Groundwater budget of aquifer. Effective infiltration evaluation Groundwater hydrodynamics: Darcy’s law, hydraulic head, hydraulic conductivity and trasmissivity, storage. Drinance. Dupuit theory. Theis and Jacob theory. Pumping test: Step Drawdown Test. Aquifer Pumping Test. Image well theory Hydrochemistry (Hints): hydrogeochemical facies, environmental isotopes Hydrological data collection, elaboration and interpretation: Rainoff, Air temperature, Evapotraspiration, River discharge (Hydrographs analysis) Groundwater flowpaths: piezometric surface. Hydraulic gradient Hydrogeological maps and case studies CELICO P. (1986) – PROSPEZIONI IDROGEOLOGICHE. VOL. I. – LIGUORI ED.
CELICO P. (1988) – PROSPEZIONI IDROGEOLOGICHE. VOL. II. – LIGUORI ED. CASTANY G. (1982) – IDROGEOLOGIA: PRINCIPI E METODI. – FLACCOVIO ED. CIVITA M. (2004) IDROGEOLOGIA APPLICATA E AMBIENTALE. CASA EDITRICE AMBROSIANA. FRANCANI V. (2014) IDROGEOLOGIA AMBIENTALE - CASA EDITRICE AMBROSIANA CUSTODIO E & LLAMAS MR(2007) IDROLOGIA SOTTERRANEA Volume 1 e Volume 2 FLACCOVIO ED. |
6 | GEO/05 | 48 | - | - | - | Core compulsory activities | ITA | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20410095 -
LINGUA INGLESE AVANZATO
|
3 | 24 | - | - | - | Other activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20402385 -
APPLIED GEOPHYSICS
(objectives)
THE STUDENTS WILL LEARN HOW TO APPLY THE PRINCIPLES OF PHYSICS TO STUDY THE EARTH. THIS COURSE PROVIDES A GENERAL INTRODUCTION TO THE MAIN APPLIED-GEOPHYSICS METHODS AND TO THEIR INTERPRETATION.
-
CAMMARANO FABIO
(syllabus)
GRAVITY METHODS
(reference books)
FIGURE OF THE HEARTH: NEWTON’S LAW: ACCELERATION OF GRAVITY:GRAVITATIONAL POTENTIAL: POTENTIAL FIELD EQUATIONS: ELLIPSOID: GRAVITY OF THE EARTH: GEOID: ABSOLUTE MEASUREMENT OF GRAVITY: RELATIVE MEASUREMENT OF GRAVITY: PRINCIPAL METHODS OF DETERMINING GRAVITY: GRAVITY REDUCTIONS: GRAVITY ANOMALIES: INTERPRETATION OF ANOMALIES: DENSITIES OF ROCKS AND MINERALS: GEOLOGICAL INTERPRETATION OF GRAVITY SEISMIC METHODS: SEISMIC WAVES: D’ALAMBERT’ EQUATION: PRIMARY AND SECONDARY WAVES: HARMONIC SOLUTION: SPEED OF SEISMIC BODYILY WAVES: REFLECTION AND REFRACTION FERMAT’S PRINCIPLE: PARTITIONINGOF ENERGY AT AN INTERFACE: REFLECTION AND TRASMISSION COEFFICIENTS, TAVEL TIME OF DIRECTLY RAY, REFLECTED RAY AND REFRACTED RAY: TRAVEL TIME CURVE FOR HORIZONTAL REFLECTOR: GEOMETRY OF REFLECTION PATH FOR DIPPING REFLECTOR: GEOMETRY REFRACTION PATH FOR DIPPING REFLECTOR: RELATION BETWEEN REFLECTION AND REFRACTION RAYPATHS ANDTRAVEL TIME CURVES: REFLECTION AND REFRACTION FIELD METHODS AND EQUIPMENT. INTRODUCTION TO SITE RESPONSE AND GROUND SHAKING ANALYSIS. RESISTIVITY METHODS ELECTICAL PROPERTIES OF MEDIA: OHM’LAW: CONDUCTOR, DIELECTRIC: POTENTIALS IN HOMOGENEUS MEDIA: ELECTICAL PROPERTIES OF ROCK AND MINERALS: CONTINUITY EQUATION: LAPLACE’S EQUATION: DIELECTRIC CONSTANT: RESISTIVITY: RESISTIVITY OF ROCK AND MINERALS. RESISTIVITY OF A POROUSE MEDIA, LABORATORY MEASUREMENT OF RESISTIVITY: MEASUREMENT OF SOIL RESISTIVITY, ELECTROD ARRAY FOR THE RESISTIVITY MEASUREMENT ON THE SUSFACES SOIL: APPARENT RESISTIVITY: WENNER SPREAD: SHLUMBERGER SPREAD: DOUBLE-DIPOLE SPREAD: ELECTRIC DRILLING TWO HORIZONTAL BEDS: EQUIPMENT FOR RESISTIVITY FIELD WORK: INTERPRETATION OF APPARENT RESISTIVITY DATA: TWO LAYER SOIL MODEL AND MULTILAYER SOIL MODEL: INTRODUCTION TO RESISTIVITY TOMOGRAPHY. TELFORD W.M. APPLIED GEOPHYSICS CAMBRIDGE UNIVERSITY PRESS FEDI M., RAPOLLA, A. I METODI GRAVIMETRICO E MAGNETICO NELLA GEOFISICA DELLA TERRA SOLIDA, COLLANA GEOFISICA PER L’AMBIENTE ED IL TERRITORIO LIGUORI, NAPOLIFEDI M., RAPOLLA, A. LE INDAGINI GEOFISICHE PER LO STUDIO DEL SOTTOSUOLO METODI GEOELETTRICI E SISMICI, COLLANA GEOFISICA PER L’AMBIENTE ED IL TERRITORIO LIGUORI, NAPOLIMUSSETT, ALAN E., AFTAB KHAN, M. ESPLORAZIONE DEL SOTTOSUOLO. UNA INTRODUZIONE ALLA GEOFISICA APPLICATA ZANICHELLI
|
6 | GEO/11 | 48 | - | - | - | Related or supplementary learning activities | ITA | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Course | Credits | Scientific Disciplinary Sector Code | Contact Hours | Exercise Hours | Laboratory Hours | Personal Study Hours | Type of Activity | Language | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20402177 -
STRATIGRAPHIC GEOLOGY
(objectives)
TO PROVIDE TO THE STUDENT THE KNOWLEDGE OF THE MAIN TOOLS OF THE STRATIGRAPHIC GEOLOGY IN ORDER TO REACH AUTONOMY AND CRITICISM CAPABILITY IN FACING THOSE TOPICS OF THE GEOLOGY THAT NEED A STRATIGRAPHIC APPROACH. APPLICATION ON THE FIELD OF THE CONCEPTS.
-
CIPOLLARI PAOLA
(syllabus)
THE COURSE IS MADE OF THREE MODULES. THE FIRST MODULE PROVIDES THE FUNDAMENTALS OF THE STRATIGRAPHIC NOMENCLATURE. THE MAIN FEATURES OF THE STRTIGRAPHIC UNITS ARE DESCRIBED AND THEIR USE IS GAINED DURING THE EXERCISES. THE SECOND MODULE PROVIDES THE PRINCIPLES OF THE SEQUENCE STRATIGRAPHY WITH APPLICATIONS TO DIFFERENT SEDIMENTARY ENVIRONMENTS AND TO SEISMIC STRATIGRAPHY. THIS MODULE ALSO PROVIDES THE PRINCIPLES OF CYCLOSTRATIGRAPHY AND ASTROCHRONOLOGY. THESE CONCEPTS ARE EXAMINED IN CASE STUDIES FROM LITERATURE. THE THIRD MODULE IS DEDICATED TO REGIONAL STRATIGRAPHY. STARTING FROM A PALAEOGEOGRAPHIC RECONSTRUCTION OF THE MESOZOIC TETHYAN AREA, AN IDEAL ROUTE TROUGH THE MAIN SEDIMENTARY DOMAINS IS FOLLOWED. IN PARTICULAR, THE MAIN BASIN SUCCESSIONS (LA SPEZIA, TOSCANA, UMBRIA-MARCHE, LAGONEGRO AND MOLISE, IMERESE-SICANO BASIN) ARE EXAMINED. SOME CASES OF PELAGIC CARBONATE PLATFORM AND THE TRANSITION PLATFORM/BASIN OF THE GARGANO SUCCESSION ARE STUDIED TOO. FINALLY, THE STRATIGRAPHY OF THE LATIUM-ABRUZZI AND DOLOMITES CARBONATE PLATFORMS IS INVESTIGATED.
(reference books)
INTERNATIONAL SUBCOMMISSION ON STRATIGRAPHIC CLASSIFICATION OF IUGS INTERNATIONAL COMMISSION ON STRATIGRAPHY
(1976) – INTERNATIONAL STRATIGRAPHIC GUIDE. SALVADOR A. (ED.) COE A.L., BOSENCE D.W.J., CHURCH K.D., FLINT S.S., HOWELL J.A., WILSON R.C. (2002) – THE SEDIMENTARY RECORD OF SEA-LEVEL CHANGE. COE A.L. (ED.). THE OPEN UNIVERSITY - CAMBRIDGE UNIVERSITY PRESS. EINSELE G., RICKEN W, SEILACHER A. (EDS.) (1991) – CYCLES AND EVENTS IN STRATIGRAPHY. SPRINGER-VERLAG. GRAHAM WEEDON, 2003. TIME SERIES ANALYSIS AND CYCLOSTRATIGRAPHY: EXAMINING STRATIGRAPHIC RECORDS OF ENVIRONMENTAL CYCLES. CAMBRIDGE UNIVERSITY PRESS. ARTICLES FROM LITERATURE |
9 | GEO/02 | 56 | - | - | - | Core compulsory activities | ITA | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20402178 -
STRUCTURAL GEOLOGY
(objectives)
THE COURSE AIMS TO PROVIDE TOOLS AND METHODS FOR DESCRIPTION, ANALYSIS AND INTERPRETATION OF DUCTILE AND BRITTLE DEFORMATION PROCESSES AFFECTING A VOLUME OF ROCK. THE GOAL IS TO RECONSTRUCT COMPLEX DEFORMATION SEQUENCES FOR INTERPRETING THE REGIONAL GEOLOGICAL EVOLUTION. THE AIM OF THE COURSE IS ALSO TO PRESENT THE STRUCTURES AND STYLES ASSOCIATED WITH REGIONAL TECTONICS.
-
ROSSETTI FEDERICO
(syllabus)
DEFORMATION AND STRAIN; COAXIAL AND NON-COAXIAL DEFORMATION; FINITE AND INCREMENTAL DEFORMATION; HETEROGENEOUS AND HOMOGENEOUS STRAIN; THE ELLIPSOID OF STRAIN; STRAIN STATES AND QUANTIFICATION OF THE FINITE STRAIN. THE STRESS TENSOR AND THE PRINCIPAL AXES OF STRESS; MOHR'S CIRCLES. PRINCIPLES OF RHEOLOGY: DUCTILE AND BRITTLE DEFORMATION; DEFORMATION MECHANISMS; CONSTITUTIVE LAWS AND STRESS-STRAIN RELATIONSHIPS; NEWTONIAN AND NON-NEWTONIAN BEHAVIOUR; CREEP PROCESS IN GEOLOGY; RECOVERY AND RECRYSTALLISATION (STATIC AND DYNAMIC RECRYSTALLISATION PROCESSES); DEFORMATION MAPS FOR MATERIALS OF GEOLOGICAL INTEREST; RHEOLOGY OF THE OCEANIC AND CONTINENTAL LITHOSPHERE. DEFORMATION AND BRITTLE SHEARING: MOHR-COULOMB FAILURE CRITERION; THE GRIFFITH CRITERION. ANDERSONIAN FAULTS: DYNAMIC ANALYSIS AND CLASSIFICATION (STRESS INVERSION). JOINTS AND VEINS. STRUCTURE OF A FAULT ZONE: FAULT CORE AND DAMAGE ZONES; CLASSIFICATION OF FAULT ROCKS. GROWTH OF FAULTS AND THEIR SPATIAL ORGANIZATION; LATERAL PROPAGATION OF FAULTS, OVERLAP, LINKAGE AND ASSOCIATED FRACTURING; KINEMATIC INDICATORS ON FAULT SURFACES; RIEDEL SHEARS (SYNTHETIC AND ANTITHETIC). FAULTS AND EARTHQUAKES: THE TOOLS OF STRUCTURAL GEOLOGY: THE STUDY OF ACTIVE AND EXHUMED SEISMOGENIC FAULTS (PSEUDOTACHYLYTES). DUCTILE DEFORMATION: ROCK FABRICS, PLANO-LINEAR STRUCTURES (FOLIATION AND LINEATION), S; L; S-L TECTONITES AND THEIR TECTONICS SIGNIFICANCE. FOLDING AND ASSOCIATED STRUCTURES (TYPES AND CLASSIFICATION; INTERFERENCE AND OVERPRINTING CRITERIA). DEFORMATION AND METAMORPHISM: BLASTESIS-DEFORMATION RELATIONSHIPS (MESO-AND MICRO-SCALE); DUCTILE SHEAR ZONES (MYLONITES) AND THEIR GEOLOGICAL SIGNIFICANCE, KINEMATIC CRITERIA (MESO-AND MICRO-SCALE). SHEAR ZONES AND FLUID CIRCULATION: FLUID-ROCK INTERACTION AND THE STRUCTURAL CONTROLS ON HYDROTHERMAL MINERALIZATION. STRUCTURES ASSOCIATION AT REGIONAL SCALE AND THE STYLES OF REGIONAL TECTONICS. EXTENSIONAL TECTONICS (RIFTING): GEOMETRY OF RIFTING; MODELS PURE- AND SIMPLE-SHEAR MODELS: REGIONAL EXAMPLES; RHEOLOGY OF THE LITHOSPHERE AND TYPES OF RIFTING; THE RIFT-DRIFT TRANSITION; RIFTING AND SEDIMENTATION: INTERACTIONS BETWEEN DEFORMATION, SEDIMENTATION AND EROSION. COMPRESSIONAL TECTONICS: "SUBDUCTION FACTORY" AND OROGENY; DYNAMICS OF OROGENIC SYSTEMS; SUBDUCTION OROGENS, COLLISION AND SUBDUCTION-ACCRETION OROGENS: STRUCTURAL STYLES, THERMO-BARIC REGIMES AND TECTONIC EVOLUTION; THE OROGENIC WEDGE AND ITS DYNAMICS (EVOLUTION AND STYLES OF THRUST-AND-FOLD BELTS). STRIKE-SLIP TECTONICS: STRUCTURAL CHARACTERISTICS AND ASSOCIATED STRUCTURES; STRIKE-SLIP AND TRANSFORM FAULTS; STRIKE-SLIP INTRAPLATE TECTONICS: REGIONAL EXAMPLES. STRUCTURAL GEOLOGY AND ITS APPLICATIONS: ORE DEPOSITS, GEOTHERMAL RESERVOIRS AND GEOTECHNICAL PROBLEMS (EXAMPLES).
(reference books)
DURING THE COURSE PRACTICAL EXERCISES WILL BE CARRIED OUT FOCUSED ON THE ANALYSIS AND INTERPRETATION OF STRUCTURAL DATA. AT THE END OF THE COURSE, A WEEK-LONG CAMP IS SCHEDULED AIMED TO FIX THE BASIC CONCEPTS THOUGH ANALYSIS OF GEOLOGICAL STRUCTURES IN THE FIELD . THE BASIC READINGS:
-G. DAVIS, S. REYNOLDS, "STRUCTURAL GEOLOGY OF ROCKS AND REGIONS", WILEY, 1996. -B. A. VAN DER PLUIJM, S. MARSHAK. W.W, "EARTH STRUCTURE" (2ND ED.), NORTON, 2004. -C. W. PASSCHIER, R. A. J. TROUW, "MICROTECTONICS” (2ND ED.), SPRINGER, 2006. COMPLEMENTARY READINGS: -N. PRICE, J. COSGROVE, "ANALYSIS OF GEOLOGICAL STRUCTURES", CAMBRIDGE UNIVERSITY PRESS, 1990. -R. TWISS, E. M: MOORES, "STRUCTURAL GEOLOGY" (2ND ED.), FREEMAN, 2007. -R. H. GROSHONG, "3-D STRUCTURAL GEOLOGY: A PRACTICAL GUIDE TO SURFACE AND SUBSURFACE MAP INTERPRETATION" (2ND ED.), SPRINGER, 2006. -J. SUPPE "PRINCIPLES OF STRUCTURAL GEOLOGY", PRENTICE-HALL, 1985. -W. BURBANK, R. S. ANDERSON "TECTONIC GEOMORPHOLOGY", BLACKWELL, 2005.
-
CIFELLI FRANCESCA
(syllabus)
ACTIVITY ON THE FIELD FOR A PERIOD OF SEVEN DAYS WEEKLY WITH THE PURPOSE OF FIXING THE BASIC CONCEPTS DISCUSSED OVER THE COURSE AND TO PRESENT IN DIFFERENT STYLES DEFORMATION CONTEXT OF REGIONAL TECTONICS.
(reference books)
VARIOUS MATERIAL PROVIDED BY THE TEACHER
|
9 | GEO/03 | 56 | - | - | - | Core compulsory activities | ITA | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20402387 -
FIELD GEOLOGY AND THEMATIC MAPS
(objectives)
TO PROVIDE PRINCIPAL METHODS FOR THE GEOLOGICAL SURVEY, MAINLY THROUGH FIELD WORK AND LAB ACTIVITIES.
TO DEVELOP THE 3D VISION OF THE ROCK BODIES AND GEOLOGICAL STRUCTURES, STARTING FROM THE OUTCROPS, THROUGH MULTIDISCIPLINARY ACTIVITIES BOTH IN THE FIELD AND IN LABS, ON GEOLOGICAL PROBLEMS WITH MEDIUM-HIGH DEGREE OF DIFFICULTY.
-
COSENTINO DOMENICO
(syllabus)
TO ADDRESS SOME BASIC NOTIONS RELATIVE TO THE GEOLOGICAL SURVEY AND MAPPING. THE GEOLOGICAL SURVEY AS A TOOL FOR RECONSTRUCTING 3D GEOLOGICAL AND PHYSICAL MODEL OF THE SUBSURFACE THROUGH THE INTEGRATION OF BOTH SURFACE AND SUBSURFACE GEOLOGICAL DATA, BOREHOLES INFORMATION AND PHYSICAL PROPERTIES OF BOTH ROCK AND INCOHERENT MATERIALS.
(reference books)
PHYSICAL PROPERTIES OF ROCKS AND INCOHERENT MATERIALS; SUBSURFACE GEOLOGY, CONSOLIDATED AND UNCONSOLIDATED PLIO-QUATERNARY COVERS OF THE MAIN REGIONS OF CENTRAL ITALY; GEOMETRICAL AND TECHNICAL CHARACTERIZATION OF THE MAIN DISCONTINUITIES AFFECTING ROCKS TO DEFINE THE QUALITY OF ROCK MASSES. THE GEOLOGICAL SURVEY FOR SEISMIC MICROZONATION PURPOSES. THE PRACTICAL ACTIVITIES OF THIS COURSE WILL BE DONE IN FIELD TRIPS LEADED IN DIFFERENT GEOLOGICAL SETTINGS FOR WORKING ON KEY AREAS OF THE CENTRAL APENNINES TO EXPERIENCE THE MAIN ACTIVITIES RELATED TO THE GEOLOGICAL SURVEY AND MAPPING: TO ANALYSE THE BEDROCK AND THE INCOHERENT QUATERNARY COVERS; TO CHARACTERIZE GEOMETRY AND TECHNICAL PROPERTIES OF ALL THE DISCONTINUITIES AFFECTING ROCK MASSES; TO COLLECT SURFACE AND SUBSURFACE DATA, PHYSICAL PROPERTIES OF ROCKS AND INCOHERENT PLIO-QUATERNARY COVERS FOR RECONSTRUCTING THE PHYSICAL AND GEOLOGICAL MODEL OF THE SUBSURFACE. EACH FIELD TRIP WILL BE PREPARED IN CLASSROOM, LOOKING AT BOTH THE MORPHOLOGICAL AND THE GEOLOGICAL SETTING OF THE AREA. SUBSEQUENTLY, ONE DAY OF FIELD TRIP ALLOW STUDENTS TO COLLECT GEOLOGICAL DATA FROM THE KEY AREA. LATER ON, DATA COLLECTED WILL BE ANALYSED AND PROCESSED IN THE LAB. LAB ACTIVITIES WILL BRING STUDENTS TO PROVIDE THE GEOLOGICAL MAP OF THE SURVEYED AREA, TOGETHER WITH SOME THEMATIC MAPS, INCLUDING MAP KEY AND GEOLOGICAL CROSS-SECTIONS. FOR EACH FIELD TRIP, STUDENTS WILL PROVIDE, ALSO, A REPORT ON THE MAIN RESULTS OF THE GEOLOGICAL SURVEY. THE PRACTICAL ACTIVITIES OF THIS COURSE WILL CONCLUDE IN A FIELD SCHOOL FINALIZED TO PRODUCE THEMATIC MAPS AND RECONSTRUCT THE GEOLOGICAL AND PHYSICAL MODEL OF THE AREA IN REGION OF MEDIUM-HIGH DEGREE OF DIFFICULTY. SCESI L., PAPINI M., GATTINONI P. – GEOLOGIA APPLICATA: IL RILEVAMENTO GEOLOGICO-TECNICO. VOL. 1, SECONDA EDIZIONE. CASA EDITRICE AMBROSIANA. CEAEDIZIONI, 2006.
CREMONINI G. - RILEVAMENTO GEOLOGICO. - ED. PITAGORA, BOLOGNA, 1985. GEOLOGICAL MAPS, TOPOGRAPHIC MAPS, AERO PHOTOS, AND ARTICLES ON THE GEOLOGY OF THE DIFFERENT AREAS THAT WILL BE OBJECT OF THE FIELD TRIPS, WILL BE PROVIDED BY THE PERSONNEL RESPONSIBLE FOR THE COURSE.
-
BALLATO PAOLO
(syllabus)
TO ADDRESS SOME BASIC NOTIONS RELATIVE TO THE GEOLOGICAL SURVEY AND MAPPING. THE GEOLOGICAL SURVEY AS A TOOL FOR RECONSTRUCTING 3D GEOLOGICAL AND PHYSICAL MODEL OF THE SUBSURFACE THROUGH THE INTEGRATION OF BOTH SURFACE AND SUBSURFACE GEOLOGICAL DATA, BOREHOLES INFORMATION AND PHYSICAL PROPERTIES OF BOTH ROCK AND INCOHERENT MATERIALS.
(reference books)
PHYSICAL PROPERTIES OF ROCKS AND INCOHERENT MATERIALS; SUBSURFACE GEOLOGY, CONSOLIDATED AND UNCONSOLIDATED PLIO-QUATERNARY COVERS OF THE MAIN REGIONS OF CENTRAL ITALY; GEOMETRICAL AND TECHNICAL CHARACTERIZATION OF THE MAIN DISCONTINUITIES AFFECTING ROCKS TO DEFINE THE QUALITY OF ROCK MASSES. THE GEOLOGICAL SURVEY FOR SEISMIC MICROZONATION PURPOSES. THE PRACTICAL ACTIVITIES OF THIS COURSE WILL BE DONE IN FIELD TRIPS LEADED IN DIFFERENT GEOLOGICAL SETTINGS FOR WORKING ON KEY AREAS OF THE CENTRAL APENNINES TO EXPERIENCE THE MAIN ACTIVITIES RELATED TO THE GEOLOGICAL SURVEY AND MAPPING: TO ANALYSE THE BEDROCK AND THE INCOHERENT QUATERNARY COVERS; TO CHARACTERIZE GEOMETRY AND TECHNICAL PROPERTIES OF ALL THE DISCONTINUITIES AFFECTING ROCK MASSES; TO COLLECT SURFACE AND SUBSURFACE DATA, PHYSICAL PROPERTIES OF ROCKS AND INCOHERENT PLIO-QUATERNARY COVERS FOR RECONSTRUCTING THE PHYSICAL AND GEOLOGICAL MODEL OF THE SUBSURFACE. EACH FIELD TRIP WILL BE PREPARED IN CLASSROOM, LOOKING AT BOTH THE MORPHOLOGICAL AND THE GEOLOGICAL SETTING OF THE AREA. SUBSEQUENTLY, ONE DAY OF FIELD TRIP ALLOW STUDENTS TO COLLECT GEOLOGICAL DATA FROM THE KEY AREA. LATER ON, DATA COLLECTED WILL BE ANALYSED AND PROCESSED IN THE LAB. LAB ACTIVITIES WILL BRING STUDENTS TO PROVIDE THE GEOLOGICAL MAP OF THE SURVEYED AREA, TOGETHER WITH SOME THEMATIC MAPS, INCLUDING MAP KEY AND GEOLOGICAL CROSS-SECTIONS. FOR EACH FIELD TRIP, STUDENTS WILL PROVIDE, ALSO, A REPORT ON THE MAIN RESULTS OF THE GEOLOGICAL SURVEY. THE PRACTICAL ACTIVITIES OF THIS COURSE WILL CONCLUDE IN A FIELD SCHOOL FINALIZED TO PRODUCE THEMATIC MAPS AND RECONSTRUCT THE GEOLOGICAL AND PHYSICAL MODEL OF THE AREA IN REGION OF MEDIUM-HIGH DEGREE OF DIFFICULTY. SCESI L., PAPINI M., GATTINONI P. – GEOLOGIA APPLICATA: IL RILEVAMENTO GEOLOGICO-TECNICO. VOL. 1, SECONDA EDIZIONE. CASA EDITRICE AMBROSIANA. CEAEDIZIONI, 2006.
CREMONINI G. - RILEVAMENTO GEOLOGICO. - ED. PITAGORA, BOLOGNA, 1985. GEOLOGICAL MAPS, TOPOGRAPHIC MAPS, AERO PHOTOS, AND ARTICLES ON THE GEOLOGY OF THE DIFFERENT AREAS THAT WILL BE OBJECT OF THE FIELD TRIPS, WILL BE PROVIDED BY THE PERSONNEL RESPONSIBLE FOR THE COURSE. |
9 | GEO/02 | 48 | - | - | - | Core compulsory activities | ITA | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20402384 -
VOLCANOLOGY AND GEOLOGY OF VOLCANIC AREAS
(objectives)
THE COURSE PROVIDES TO THE STUDENTS THE BASIC CONCEPTS USEFUL FOR UNDERSTAND THE ERUPTIVE PROCESSES AND THE DEPOSITIONAL MECHANISM OF THE EFFUSIVE AND EXPLOSIVE DEPOSITS, STARTING FROM THE ANALYSES, CHARACTERIZATION AND INTERPRETATION OF THE DEPOSITS . MAIN TOPIC OF THE COURSE IS TO JOINT THE FIELD OBSERVATION TO THE THEORETICAL CONCEPTS.
FOR THE COMPREHENSION OF THE ARGUMENTS DEALT DURING THE COURSE IT IS NECESSARY TO HAVE CONCEPTS OF SEDIMENTOLOGY, PETROGRAPHY AND GEOCHEMISTRY.
-
GIORDANO GUIDO
(syllabus)
INTRODUCTION (SHORT HISTORY OF THE STUDIES IN VOLCANOLOGY; TERMINOLOGY OF THE VOLCANIC PRODUCTS; FACIES ANALYSES OF VOLCANIC DEPOSITS; PYROCLASTIC AND VOLCANOCLASTIC ROCKS AS KEY- ELEMENTS TO INTERPRET THE EXPLOSIVE AND POST ERUPTIVE PROCESSES IN THE RELATED ENVIRONMENTS).
(reference books)
CLASSIFICATION OF THE EFFUSIVE AND EXPLOSIVE DEPOSITS. COMPONENTS, TEXTURES AND STRUCTURES OF VOLCANIC AND VOLCANICLASTIC DEPOSITS. CLASSIFICATION OF PYROCLASTIC AND VOLCANOCLASTIC DEPOSITS. DEPOSITIONAL AND EROSIVE PROCESSES IN VOLCANIC AREAS. MORPHOLOGY OF VOLCANOES: MONOGENETIC AND POLYGENETIC VOLCANOES. THE PROCESS OF MAGMA RISING: THE EFFUSIVE PROCESS (LAVA FLOWS IN SUBAERIAL AND SUBACQUEOUS ENVIRONMENTS). MAGMA ESSOLUTION AND FRAGMENTATION (THE EXPLOSIVE ERUPTIONS, STYLES OF MAGMA FRAGMENTATION , RELATED MICRO-TEXTURE). TRANSPORT AND EMPLACEMENT MECHANISM OF THE EFFUSIVE AND EXPLOSIVE PRODUCTS AND RELATED DEPOSITS IN SUBAERIAL AND SUBACQUEOUS ENVIRONMENTS. BALLISTIC PATHWAYS OF LARGE CLASTS . MAIN CHARACTERISTICS OF THE ERUPTIONS AND CLASSIFICATION OF THE ERUPTIVE STYLES. MAIN CONCEPTS OF VOLCANIC HAZARD AND RISK. FROM MAGMA TO TEPHRA: MODELING PHYSICAL PROCESSES OF EXPLOSIVE VOLCANIC ERUPTIONS. EDITED BY ARMIN FREUNDT AND MAURO ROSI, 2000. ELSEVIER.
VOLCANIC SUCCESSIONS. CAS R.A.F. & WRIGHT J.V., 1987. ALLEN & UNWIN PYROCLASTIC ROCKS R.V. FISHER AND H.-U. SCHMINCKE, 1984. SPRINGER. ENCICLOPEDIA OF VOLCANOES. EDITED BY HARALDUR SIGURDSSON, BRUCE HOUGHTON, HAZEL RYMER, JOHN STIX, STEVE MCNUTT, 2000. ACADEMIC PRESS. FUNDAMENTALS OF PHYSICAL VOLCANOLOGY. E.A. PARFITT, L. WILSON 2008. BLACKWELL, OXFORD, PAPERBACK, 256 PAGES, ISBN: 978-0-632-05443-5 ORARIO DI RICEVIMENTO LUNEDì ORE 11-12
-
VONA ALESSANDRO
(syllabus)
INTRODUCTION (SHORT HISTORY OF THE STUDIES IN VOLCANOLOGY; TERMINOLOGY OF THE VOLCANIC PRODUCTS; FACIES ANALYSES OF VOLCANIC DEPOSITS; PYROCLASTIC AND VOLCANOCLASTIC ROCKS AS KEY- ELEMENTS TO INTERPRET THE EXPLOSIVE AND POST ERUPTIVE PROCESSES IN THE RELATED ENVIRONMENTS).
(reference books)
CLASSIFICATION OF THE EFFUSIVE AND EXPLOSIVE DEPOSITS. COMPONENTS, TEXTURES AND STRUCTURES OF VOLCANIC AND VOLCANICLASTIC DEPOSITS. CLASSIFICATION OF PYROCLASTIC AND VOLCANOCLASTIC DEPOSITS. DEPOSITIONAL AND EROSIVE PROCESSES IN VOLCANIC AREAS. MORPHOLOGY OF VOLCANOES: MONOGENETIC AND POLYGENETIC VOLCANOES. THE PROCESS OF MAGMA RISING: THE EFFUSIVE PROCESS (LAVA FLOWS IN SUBAERIAL AND SUBAQUEOUS ENVIRONMENTS). MAGMA EXSOLUTION AND FRAGMENTATION (THE EXPLOSIVE ERUPTIONS, STYLES OF MAGMA FRAGMENTATION, RELATED MICRO-TEXTURE). TRANSPORT AND EMPLACEMENT MECHANISM OF THE EFFUSIVE AND EXPLOSIVE PRODUCTS AND RELATED DEPOSITS IN SUBAERIAL AND SUBAQUEOUS ENVIRONMENTS. BALLISTIC PATHWAYS OF LARGE CLASTS. MAIN CHARACTERISTICS OF THE ERUPTIONS AND CLASSIFICATION OF THE ERUPTIVE STYLES. MAIN CONCEPTS OF VOLCANIC HAZARD AND RISK. FROM MAGMA TO TEPHRA: MODELING PHYSICAL PROCESSES OF EXPLOSIVE VOLCANIC ERUPTIONS. EDITED BY ARMIN FREUNDT AND MAURO ROSI, 2000. ELSEVIER.
VOLCANIC SUCCESSIONS. CAS R.A.F. & WRIGHT J.V., 1987. ALLEN & UNWIN PYROCLASTIC ROCKS R.V. FISHER AND H.-U. SCHMINCKE, 1984. SPRINGER. ENCYCLOPEDIA OF VOLCANOES. EDITED BY HARALDUR SIGURDSSON, BRUCE HOUGHTON, HAZEL RYMER, JOHN STIX, STEVE MCNUTT, 2000. ACADEMIC PRESS. FUNDAMENTALS OF PHYSICAL VOLCANOLOGY. E.A. PARFITT, L. WILSON 2008. BLACKWELL, OXFORD, PAPERBACK, 256 PAGES, ISBN: 978-0-632-05443-5 |
9 | GEO/08 | 56 | - | - | - | Core compulsory activities | ITA | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Course | Credits | Scientific Disciplinary Sector Code | Contact Hours | Exercise Hours | Laboratory Hours | Personal Study Hours | Type of Activity | Language | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20402191 -
ENVIRONMENTAL GEOCHEMISTRY
(objectives)
THE MAIN GOAL OF THE COURSE IS TO DEVELOP A CRITICAL VIEW AND A SPECIFIC FEELING IN THE STUDENTS ABOUT THE VARIED ISSUES REGARDING THE BASIC KNOWLEDGE AND THE APPLICATIONS OF THE ENVIRONMENTAL GEOCHEMISTRY.
-
TUCCIMEI PAOLA
(syllabus)
THE COURSE IS DEVOTED TO PROVIDE STUDENTS WITH TOOLS AND METHODS TO IDENTIFY THE ANTHROPIC IMPACT ON NATURAL GEOCHEMICAL CYCLES OF ELEMENTS AND CHEMICALS. IT IS ORGANISED INTO THREE MAIN SECTIONS ON WATER POLLUTION, ATMOSPHERIC PROCESSES AND ENVIRONMENTAL RADIOGEOCHEMISTRY.
(reference books)
THE COURSE OPENS WITH THE ILLUSTRATION OF TWO CASE-STUDIES ABOUT ACCIDENTAL SPILLS IN THE SUBSOIL OF TWO CHEMICALS (CR-VI AND ACETONE CYANOYDRIN), WITH FOLLOWING SOIL AND GROUNDWATER CONTAMINATION. MONITORING ACTIONS TO IDENTIFY THE EXTENSION OF THE PLUME AND REMEDIATION APPROACHES ARE INTRODUCED. THESE EXAMPLES ARE USED TO PRESENT THE BASIC S OF ENVIRONMENTAL GEOCHEMISTRY: SORPTION ONTO MINERAL CLAYS, ORGANIC MATTER AND FE/AL/MN OXIDES/HYDROXIDES; GEOCHEMICAL MOBILITY AND RELATED PARAMETERS; NATURAL GEOCHEMICAL BASELINES AND THE USE OF A SPECIFIC CHEMICAL MAPPING. CONTAMINATION FROM HEAVY METALS (PB AND HG). THE SECOND SECTION DEALS WITH GREENHOUSE EFFECT, REDUCTION OF THE STRATOSPHERIC OZONE, URBAN POLLUTION, ACID RAINS AND PHOTOCHEMICAL SMOG. THE CONFLICTING CONCEPTS OF NATURAL EQUILIBRIA ALTERED BY HUMAN ACTIVITIES AND RECORDS OF PAST NATURAL DISTURBANCE IN THE GEOLOGICAL RECORDS ARE EMPHASISED. LAST MAIN SECTION IS DEDICATED TO ENVIRONMENTAL RADIOACTIVITY AND RISK DUE TO HUMAN ACTIVITIES DEALING WITH NUCLEAR ENERGY: NUCLEAR REACTORS, GEOLOGICAL DISPOSAL OF RADIOACTIVE WASTE, ACCIDENTS TO NUCLEAR POWER PLANTS (CHERNOBYL AND FUKUSHIMA), MILITARY USE OF DEPLETED URANIUM. FINALLY, THE FOLLOWING ISSUES ARE DESCRIBED: RADON RISK, THE USE OF RADON AS TRACER OF SINKHOLE DEVELOPMENT, AS SEISMIC PRECURSOR AND AS A TOOL TO STUDY GROUNDWATER CIRCULATION AND MIXING OR THE OCCURENCE IN THE SUBSOIL OF NON AQUEOSUS PHASE LIQUIDS (NAPL). GENERALLY SPEAKING, THE RECENTLY INTRODUCED DISCIPLINE OF MEDICAL GEOCHEMISTRY AND THE IMPACT OF MUNICIPAL SOLID WASTE LANDFILLS ON THE ENVIRONMENT ARE EXPOED WITH SPECIAL ENPHASIS ON THE LEACHATE, THE ROLE OF BACTERIA IN THE DEGRADATION OF POLLUTANTS AND NATURAL ATTENUATION. BAIRD C. CHIMICA AMBIENTALE. ZANICHELLI EDITORE, 2001- IN ITALIAN
DONGARRA' G., VARRICA D. GEOCHIMICA E AMBIENTE, EDISES, 2004 - IN ITALIAN DREVER J.I. THE GEOCHEMISTRY OF NATURAL WATERS - SURFACE AND GROUNDWATER ENVIRONMENT, PRENTICE-HALL, 1997 - CHAPTERS 4, 5, 9 – SORPTION, IONIC EXCHANGE AND HEAVY METALS NATHANAIL C.P., BARDOS R.P. RECLAMATION OF CONTAMINATED LAND, WILEY, 2004 SHERWOOD LOLLAR B. ENVIRONMENTAL GEOCHEMISTRY. VOLUME 9 DEL TREATISE ON GEOCHEMISTRY, ELSEVIER B.V. 2004 TUCCIMEI P. SPECIFIC TEACHING MATERIAL |
6 | GEO/08 | 48 | - | - | - | Core compulsory activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20410061 -
GEOLOGIA PER IL RISCHIO SISMICO
(objectives)
Provide students with the methodological basis for the study of active faults, capable and seismogenic a view to assessing the hazards and risks, including for projects of seismic zoning.
-
GALADINI Fabrizio
(syllabus)
- Definition of seismic risk; geology for seismic hazard, general aspects.
(reference books)
- Active and capable faults: definitions related to the local geological framework; possible definitions of active and capable faults for the different tectonic domains of the italian territory; recent tectonic evolution of the italian territory and characterisation of active and capable faults; chronological framework of interest for the study of active and capable faults; applications in the engineering field: from high risk plants to the planning of the land use; geomorphological effects of surface faulting and the impact on the engineering works. - Quaternary geology, geomorphology and paleoseismology for the identification and characterisation of active and capable faults; geomorphological evidence of the recent fault activity: fault scarps; the displacements of quaternary units and their dating; geological methods to define the evolution of fault activity during the late Pleistocene-Holocene; concepts of recurrence time, elapsed time since the last activation, rate of movement; methods to identify evidence of historical displacements: archaeological information and historical seismology. - Definition of seismogenic source; from surface geological data to subsurface data: from the active fault to the seismogenic fault; case studies of integration of surface and subsurface data to define source geometries; definition of magnitude and source dimension; applications in the engineering field: seismic hazard assessment, shaking scenarios, damage scenarios. - Other geological aspects of interest for seismic risk: deep seated gravitational slope deformations, liquefactions and sinkholes; their geological and geomorphological characterisation; problems related to engineering works. Various material provided by the teacher
|
6 | GEO/11 | 48 | - | - | - | Core compulsory activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20402193 -
GEOTECHNICS
(objectives)
THE AIM OF THE COURSE IS TO PROVIDE THE BASIC KNOWLEDGE OF THE SOIL MECHANICS AND GEOTECHNICAL ENGINEERING PRINCIPLES.
-
LEMBO FAZIO ALBINO
(syllabus)
- PHYSICAL AND INDEX PROPETIES OF SOILS; SOIL CLASSIFICATION; ATTERBERG LIMITS;
(reference books)
- PERMEABILITY OF SOILS; DARCY’S LAW; LABORATORY PERMEABILITY TESTS; - STRESSES (TOTAL AND EFFETTIVE) IN SOILS; - COMPRESSIBILITY OF SOIL; ONE-DIMENSIONAL CONSOLIDATION TEST; LOAD-DEFORMATION CHARACTERISTICS OF SOILS; - SHEAR STREANGTH OF SOIL; MOHR’S THEORY OF FAILURE; DIRECT SHEAR TEST; TRIAXIAL TEST; - STABILITY OF SLOPES; INFINITY SLOPES; METHOD OF SLICES (BISHOP’S SIMPLIFIED METHOD); - CLASSIFICATION AND INDEX PROPERTIES OF ROCKS; - ROCK STRENGTH AND FAILURE CRITERIA; - APPLICATIONS OF ROCK MECHANICS TO ROCK SLOPE ENGINEERING. LAMBE T.W. & WHITMANN R.W., SOIL MECHANICS, J. WILEY & SONS, LONDON
LANCELLOTTA R., GEOTECNICA, ZANICHELLI, BOLOGNA. COLOSELLI COLOMBO. ELEMENTI DI GEOTECNICA. ZANICHELLI. BOLOGNA INTRODUCTION TO ROCK MECHANICS. R.E. GOODMAN. VARIOUS MATERIAL PROVIDED BY THE TEACHER. |
6 | ICAR/07 | 48 | - | - | - | Core compulsory activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Course | Credits | Scientific Disciplinary Sector Code | Contact Hours | Exercise Hours | Laboratory Hours | Personal Study Hours | Type of Activity | Language | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20402407 -
GEOLOGY FOR VOLCANIC RISK
(objectives)
THE TARGET OF THE COURSE IS TO TEACH THE BASIC CONCEPTS ON BOTH RISK ASSESSMENT AND RISK MITIGATION IN VOLCANIC AREAS: METHODS FOR VOLCANO MONITORING; VOLCANIC HAZARDS ASSOCIATED WITH DIFFERENT ERUPTIONS; UNDERSTANDING AND USE OF VOLCANIC HAZARD MAPS; PLANNING POLICIES FROM VOLCANIC RISK.
-
ACOCELLA VALERIO
(syllabus)
Hazard and risk applied to volcanoes: concepts, history, perspectives. Deterministic and probabilistic approach on the short-, medium- and long-term. Volcano monitoring systems. Volcanic unrest. Eruptive and reference scenarios. Elicitations. Build up of the event-tree.
(reference books)
Hazard related to effusive activity (lava flows, domes, lava fountains, strombolian activity). Hazard related to explosive eruptions (pyroclastic flows, fall deposits, ash plumes, climate changes). Mobilization of volcanic products (lahars). Hazard related to sector collapses and related tsunamis. Hazard from gas emission. Seismic hazard in volcanic areas. Integrate approach and multi-hazard analysis. Basic principles to evaluate the volcanic risk (vulnerability and exposure; evacuations, resilience, dissemination). Volcanic risk in the Civil Protection. Examples of definition of the volcanic hazard at the main active Italian volcanoes (Etna, Stromboli, Vesuvio, Campi Flegrei). Material and scientific articles provided by the teacher
|
6 | GEO/08 | 48 | - | - | - | Related or supplementary learning activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20402418 -
APPLIED GEOMORPHOLOGY
(objectives)
THE AIM OF THIS COURSE IS TO PROVIDE STUDENTS WITH TOOLS TO SOLVE A “GEOMORPHOLOGY PROBLEM”, COLLECTING AND ANALYSING DATA AND TO SUGGEST A POSSIBLE SOLUTION TO PREVENT OR MITIGATE PHENOMENA THAT GENERATE CONDITION OF HAZARD.
-
MOLIN PAOLA
(syllabus)
Introduction; the role of Geomophology in the assessment of natural risk; the principles of geomorphological hazard, vulnerability, risk; endogenic and exogenic morphogenesis of dangerous surface processes and methods to study them; fluvial dynamics and river erosion, relative hazard and mitigation; floods; coastal dynamics, marine erosion and mitigation; tectonic geomorphology with particular regard on active tectonics; slope dynamics: diffusion, mass wasting, soil erosion, relative hazard and mitigation. In-class activities are planned for each topic.
(reference books)
Alcantara-Ayala, Goudie "Geomorphological Hazards and Disaster Prevention", Cambridge University Press
Mario Panizza "Manuale di Geomorfologia Applicata", FrancoAngeli (Nuova Edizione) Antonio Vallario "Frane e territorio", Liguori Editore During in-class activity and lessons, scientific papers and exercises will be hand out by the professor. |
6 | GEO/04 | 48 | - | - | - | Core compulsory activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20410063 -
CAMPO DI FINE BIENNIO
(objectives)
PRACTICAL GEOLOGICAL EXPERIENCES, WITH THE AIM OF LEARNING A GLOBAL APPROACHING TO THE APPLICATIONS OF GEOLOGY (GEOLOGICAL FRAMEWORK, URBANIZATION, LANDSLIDE, WATER RESOURCES, NONRENEWABLE RESOURCES, ENVIRONMENTAL REQUALIFICATIONS, ECT.). CONTACTS WITH PROFESSIONAL GEOLOGY CONTEXT IN SOLVING REAL PROBLEMS.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20410063-1 -
CAMPO DI FINE BIENNIO - I MODULO
(objectives)
PRACTICAL GEOLOGICAL EXPERIENCES, WITH THE AIM OF LEARNING A GLOBAL APPROACHING TO THE APPLICATIONS OF GEOLOGY (GEOLOGICAL FRAMEWORK, URBANIZATION, LANDSLIDE, WATER RESOURCES, NONRENEWABLE RESOURCES, ENVIRONMENTAL REQUALIFICATIONS, ECT.). CONTACTS WITH PROFESSIONAL GEOLOGY CONTEXT IN SOLVING REAL PROBLEMS.
-
MAZZA ROBERTO
(syllabus)
A COMPARISON OF VARIOUS GEOLOGICAL SITUATIONS IS PROPOSED TO STUDENTS WITH THE GOAL TO STIMULATE FROM THEIR SIDE THE SOLUTIONS BY APPLICATIONS WHICH AIM AT DEFINING, IN TERMS OF GEOLOGICAL, ISSUES FOR PROJECT WORKS AND MITIGATION OF GEOLOGICAL RISK MANAGEMENT.
(reference books)
THIS LEARNING FIELDWORK IS INTEGRATED BY MEETINGS WITH LOCAL PROFESSIONAL FIRMS AND THE REPRESENTATIVES OF LAND MANAGEMENT AGENCIES. THE LEARNING ACTIVITIES INCLUDE SEMINARS ON RELATED TOPICS. THE EVALUATION ACTS BY A POWER POINT REPORT DONE FROM A RESTRICTED GROUP OF STUDENTS. VARIOUS MATERIAL PROVIDED BY THE TEACHER
-
DELLA MONICA GIUSEPPE
(syllabus)
A COMPARISON OF VARIOUS GEOLOGICAL SITUATIONS IS PROPOSED TO STUDENTS WITH THE GOAL TO STIMULATE FROM THEIR SIDE THE SOLUTIONS BY APPLICATIONS WHICH AIM AT DEFINING, IN TERMS OF GEOLOGICAL, ISSUES FOR PROJECT WORKS AND MITIGATION OF GEOLOGICAL RISK MANAGEMENT.
(reference books)
THIS LEARNING FIELDWORK IS INTEGRATED BY MEETINGS WITH LOCAL PROFESSIONAL FIRMS AND THE REPRESENTATIVES OF LAND MANAGEMENT AGENCIES. THE LEARNING ACTIVITIES INCLUDE SEMINARS ON RELATED TOPICS. THE EVALUATION ACTS BY A POWER POINT REPORT DONE FROM A RESTRICTED GROUP OF STUDENTS. VARIOUS MATERIAL PROVIDED BY THE TEACHER
|
1 | GEO/05 | - | - | - | - | Other activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20410063-2 -
CAMPO DI FINE BIENNIO - II MODULO
(objectives)
PRACTICAL GEOLOGICAL EXPERIENCES, WITH THE AIM OF LEARNING A GLOBAL APPROACHING TO THE APPLICATIONS OF GEOLOGY (GEOLOGICAL FRAMEWORK, URBANIZATION, LANDSLIDE, WATER RESOURCES, NONRENEWABLE RESOURCES, ENVIRONMENTAL REQUALIFICATIONS, ECT.). CONTACTS WITH PROFESSIONAL GEOLOGY CONTEXT IN SOLVING REAL PROBLEMS.
-
MOLIN PAOLA
(syllabus)
A COMPARISON OF VARIOUS GEOLOGICAL SITUATIONS IS PROPOSED TO STUDENTS WITH THE GOAL TO STIMULATE FROM THEIR SIDE THE SOLUTIONS BY APPLICATIONS WHICH AIM AT DEFINING, IN TERMS OF GEOLOGICAL, ISSUES FOR PROJECT WORKS AND MITIGATION OF GEOLOGICAL RISK MANAGEMENT.
(reference books)
THIS LEARNING FIELDWORK IS INTEGRATED BY MEETINGS WITH LOCAL PROFESSIONAL FIRMS AND THE REPRESENTATIVES OF LAND MANAGEMENT AGENCIES. THE LEARNING ACTIVITIES INCLUDE SEMINARS ON RELATED TOPICS. THE EVALUATION ACTS BY A POWER POINT REPORT DONE FROM A RESTRICTED GROUP OF STUDENTS. hand-outs provided by the professor
-
BELLATRECCIA FABIO
(syllabus)
A COMPARISON OF VARIOUS GEOLOGICAL SITUATIONS IS PROPOSED TO STUDENTS WITH THE GOAL TO STIMULATE FROM THEIR SIDE THE SOLUTIONS BY APPLICATIONS WHICH AIM AT DEFINING, IN TERMS OF GEOLOGICAL, ISSUES FOR PROJECT WORKS AND MITIGATION OF GEOLOGICAL RISK MANAGEMENT.
(reference books)
THIS LEARNING FIELDWORK IS INTEGRATED BY MEETINGS WITH LOCAL PROFESSIONAL FIRMS AND THE REPRESENTATIVES OF LAND MANAGEMENT AGENCIES. THE LEARNING ACTIVITIES INCLUDE SEMINARS ON RELATED TOPICS. THE EVALUATION ACTS BY A POWER POINT REPORT DONE FROM A RESTRICTED GROUP OF STUDENTS. VARIOUS MATERIAL PROVIDED BY THE TEACHER
-
MAZZA ROBERTO
(syllabus)
A COMPARISON OF VARIOUS GEOLOGICAL SITUATIONS IS PROPOSED TO STUDENTS WITH THE GOAL TO STIMULATE FROM THEIR SIDE THE SOLUTIONS BY APPLICATIONS WHICH AIM AT DEFINING, IN TERMS OF GEOLOGICAL, ISSUES FOR PROJECT WORKS AND MITIGATION OF GEOLOGICAL RISK MANAGEMENT.
(reference books)
THIS LEARNING FIELDWORK IS INTEGRATED BY MEETINGS WITH LOCAL PROFESSIONAL FIRMS AND THE REPRESENTATIVES OF LAND MANAGEMENT AGENCIES. THE LEARNING ACTIVITIES INCLUDE SEMINARS ON RELATED TOPICS. THE EVALUATION ACTS BY A POWER POINT REPORT DONE FROM A RESTRICTED GROUP OF STUDENTS. VARIOUS MATERIAL PROVIDED BY THE TEACHER
|
1 | GEO/05 | - | - | - | - | Other activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20410063-3 -
CAMPO DI FINE BIENNIO - III MODULO
(objectives)
PRACTICAL GEOLOGICAL EXPERIENCES, WITH THE AIM OF LEARNING A GLOBAL APPROACHING TO THE APPLICATIONS OF GEOLOGY (GEOLOGICAL FRAMEWORK, URBANIZATION, LANDSLIDE, WATER RESOURCES, NONRENEWABLE RESOURCES, ENVIRONMENTAL REQUALIFICATIONS, ECT.). CONTACTS WITH PROFESSIONAL GEOLOGY CONTEXT IN SOLVING REAL PROBLEMS.
-
SALVINI FRANCESCO
(syllabus)
A COMPARISON OF VARIOUS GEOLOGICAL SITUATIONS IS PROPOSED TO STUDENTS WITH THE GOAL TO STIMULATE FROM THEIR SIDE THE SOLUTIONS BY APPLICATIONS WHICH AIM AT DEFINING, IN TERMS OF GEOLOGICAL, ISSUES FOR PROJECT WORKS AND MITIGATION OF GEOLOGICAL RISK MANAGEMENT.
(reference books)
THIS LEARNING FIELDWORK IS INTEGRATED BY MEETINGS WITH LOCAL PROFESSIONAL FIRMS AND THE REPRESENTATIVES OF LAND MANAGEMENT AGENCIES. THE LEARNING ACTIVITIES INCLUDE SEMINARS ON RELATED TOPICS. THE EVALUATION ACTS BY A POWER POINT REPORT DONE FROM A RESTRICTED GROUP OF STUDENTS. VARIOUS MATERIAL PROVIDED BY THE TEACHER
-
TUCCIMEI PAOLA
(syllabus)
A COMPARISON OF VARIOUS GEOLOGICAL SITUATIONS IS PROPOSED TO STUDENTS WITH THE GOAL TO STIMULATE FROM THEIR SIDE THE SOLUTIONS BY APPLICATIONS WHICH AIM AT DEFINING, IN TERMS OF GEOLOGICAL, ISSUES FOR PROJECT WORKS AND MITIGATION OF GEOLOGICAL RISK MANAGEMENT.
(reference books)
THIS LEARNING FIELDWORK IS INTEGRATED BY MEETINGS WITH LOCAL PROFESSIONAL FIRMS AND THE REPRESENTATIVES OF LAND MANAGEMENT AGENCIES. THE LEARNING ACTIVITIES INCLUDE SEMINARS ON RELATED TOPICS. THE EVALUATION ACTS BY A POWER POINT REPORT DONE FROM A RESTRICTED GROUP OF STUDENTS. My contribution deals with: Geochemical composition of main springs and its interpretation to reconstruct hydrogeological circuits Soil gas (radon) measurements: geochemical prospecting and environmental hazard VARIOUS MATERIAL PROVIDED BY THE TEACHER
-
MAZZA ROBERTO
(syllabus)
A COMPARISON OF VARIOUS GEOLOGICAL SITUATIONS IS PROPOSED TO STUDENTS WITH THE GOAL TO STIMULATE FROM THEIR SIDE THE SOLUTIONS BY APPLICATIONS WHICH AIM AT DEFINING, IN TERMS OF GEOLOGICAL, ISSUES FOR PROJECT WORKS AND MITIGATION OF GEOLOGICAL RISK MANAGEMENT.
(reference books)
THIS LEARNING FIELDWORK IS INTEGRATED BY MEETINGS WITH LOCAL PROFESSIONAL FIRMS AND THE REPRESENTATIVES OF LAND MANAGEMENT AGENCIES. THE LEARNING ACTIVITIES INCLUDE SEMINARS ON RELATED TOPICS. THE EVALUATION ACTS BY A POWER POINT REPORT DONE FROM A RESTRICTED GROUP OF STUDENTS. VARIOUS MATERIAL PROVIDED BY THE TEACHER
|
1 | GEO/05 | - | - | - | - | Other activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20402419 -
STAGE
|
3 | - | - | - | - | Per stages e tirocini presso imprese, enti pubblici o privati, ordini professionali (art.10, comma 5, lettera e) | ITA | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20410120 -
PROVA FINALE
|
21 | - | - | - | - | Final examination and foreign language test | ITA | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Course | Credits | Scientific Disciplinary Sector Code | Contact Hours | Exercise Hours | Laboratory Hours | Personal Study Hours | Type of Activity | Language | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20402166 -
HYDROGEOLOGY
(objectives)
ABILITY TO LOCATE, QUANTIFY AND MANAGE GROUNDWATER RESOURCES; ABILITY TO PRODUCE HYDROGEOLOGICAL MAPS; ABILITY TO DESIGN WORKS COLLECTION OF SPRINGS AND UNDERGROUND AQUIFERS; ABILITY TO PRODUCE HYDROGEOLOGICAL SCHEMES AND/OR HYDROGEOLOGICAL MODELS.
-
MASTRORILLO LUCIA
(syllabus)
Aquifers: porosity and effective porosity, primary and secondary porosity. Recharge area, aquiclud and
(reference books)
aquitard. Porous, fractured and karst aquifers. Confined and unconfined aquifers. Shallow and basal aquifers. River - aquifer interaction. Coastal aquifers. Groundwater resources and riserves Regional hydrogeology (Central Italy): Hydrogeological complexes. Comparison between different hydrodynamic attitude: Umbria Marchean domain, Latium Abruzzi domain, volcanic domain. Faults role in hydrogeology. Main springs in the Central Italy Spring: main spring classifications. Spring discharge (recession curves). Spring protection areas. Base Flow of river discharge: Hydrograph basin vs hydrogeological basin Water budget: hydrological cycle. Water budget of hydrographic basin. Groundwater budget of aquifer. Effective infiltration evaluation Groundwater hydrodynamics: Darcy’s law, hydraulic head, hydraulic conductivity and trasmissivity, storage. Drinance. Dupuit theory. Theis and Jacob theory. Pumping test: Step Drawdown Test. Aquifer Pumping Test. Image well theory Hydrochemistry (Hints): hydrogeochemical facies, environmental isotopes Hydrological data collection, elaboration and interpretation: Rainoff, Air temperature, Evapotraspiration, River discharge (Hydrographs analysis) Groundwater flowpaths: piezometric surface. Hydraulic gradient Hydrogeological maps and case studies CELICO P. (1986) – PROSPEZIONI IDROGEOLOGICHE. VOL. I. – LIGUORI ED.
CELICO P. (1988) – PROSPEZIONI IDROGEOLOGICHE. VOL. II. – LIGUORI ED. CASTANY G. (1982) – IDROGEOLOGIA: PRINCIPI E METODI. – FLACCOVIO ED. CIVITA M. (2004) IDROGEOLOGIA APPLICATA E AMBIENTALE. CASA EDITRICE AMBROSIANA. FRANCANI V. (2014) IDROGEOLOGIA AMBIENTALE - CASA EDITRICE AMBROSIANA CUSTODIO E & LLAMAS MR(2007) IDROLOGIA SOTTERRANEA Volume 1 e Volume 2 FLACCOVIO ED. |
6 | GEO/05 | 48 | - | - | - | Core compulsory activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20410095 -
LINGUA INGLESE AVANZATO
|
3 | 24 | - | - | - | Other activities | ITA | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20402385 -
APPLIED GEOPHYSICS
(objectives)
THE STUDENTS WILL LEARN HOW TO APPLY THE PRINCIPLES OF PHYSICS TO STUDY THE EARTH. THIS COURSE PROVIDES A GENERAL INTRODUCTION TO THE MAIN APPLIED-GEOPHYSICS METHODS AND TO THEIR INTERPRETATION.
-
CAMMARANO FABIO
(syllabus)
GRAVITY METHODS
(reference books)
FIGURE OF THE HEARTH: NEWTON’S LAW: ACCELERATION OF GRAVITY:GRAVITATIONAL POTENTIAL: POTENTIAL FIELD EQUATIONS: ELLIPSOID: GRAVITY OF THE EARTH: GEOID: ABSOLUTE MEASUREMENT OF GRAVITY: RELATIVE MEASUREMENT OF GRAVITY: PRINCIPAL METHODS OF DETERMINING GRAVITY: GRAVITY REDUCTIONS: GRAVITY ANOMALIES: INTERPRETATION OF ANOMALIES: DENSITIES OF ROCKS AND MINERALS: GEOLOGICAL INTERPRETATION OF GRAVITY SEISMIC METHODS: SEISMIC WAVES: D’ALAMBERT’ EQUATION: PRIMARY AND SECONDARY WAVES: HARMONIC SOLUTION: SPEED OF SEISMIC BODYILY WAVES: REFLECTION AND REFRACTION FERMAT’S PRINCIPLE: PARTITIONINGOF ENERGY AT AN INTERFACE: REFLECTION AND TRASMISSION COEFFICIENTS, TAVEL TIME OF DIRECTLY RAY, REFLECTED RAY AND REFRACTED RAY: TRAVEL TIME CURVE FOR HORIZONTAL REFLECTOR: GEOMETRY OF REFLECTION PATH FOR DIPPING REFLECTOR: GEOMETRY REFRACTION PATH FOR DIPPING REFLECTOR: RELATION BETWEEN REFLECTION AND REFRACTION RAYPATHS ANDTRAVEL TIME CURVES: REFLECTION AND REFRACTION FIELD METHODS AND EQUIPMENT. INTRODUCTION TO SITE RESPONSE AND GROUND SHAKING ANALYSIS. RESISTIVITY METHODS ELECTICAL PROPERTIES OF MEDIA: OHM’LAW: CONDUCTOR, DIELECTRIC: POTENTIALS IN HOMOGENEUS MEDIA: ELECTICAL PROPERTIES OF ROCK AND MINERALS: CONTINUITY EQUATION: LAPLACE’S EQUATION: DIELECTRIC CONSTANT: RESISTIVITY: RESISTIVITY OF ROCK AND MINERALS. RESISTIVITY OF A POROUSE MEDIA, LABORATORY MEASUREMENT OF RESISTIVITY: MEASUREMENT OF SOIL RESISTIVITY, ELECTROD ARRAY FOR THE RESISTIVITY MEASUREMENT ON THE SUSFACES SOIL: APPARENT RESISTIVITY: WENNER SPREAD: SHLUMBERGER SPREAD: DOUBLE-DIPOLE SPREAD: ELECTRIC DRILLING TWO HORIZONTAL BEDS: EQUIPMENT FOR RESISTIVITY FIELD WORK: INTERPRETATION OF APPARENT RESISTIVITY DATA: TWO LAYER SOIL MODEL AND MULTILAYER SOIL MODEL: INTRODUCTION TO RESISTIVITY TOMOGRAPHY. TELFORD W.M. APPLIED GEOPHYSICS CAMBRIDGE UNIVERSITY PRESS FEDI M., RAPOLLA, A. I METODI GRAVIMETRICO E MAGNETICO NELLA GEOFISICA DELLA TERRA SOLIDA, COLLANA GEOFISICA PER L’AMBIENTE ED IL TERRITORIO LIGUORI, NAPOLIFEDI M., RAPOLLA, A. LE INDAGINI GEOFISICHE PER LO STUDIO DEL SOTTOSUOLO METODI GEOELETTRICI E SISMICI, COLLANA GEOFISICA PER L’AMBIENTE ED IL TERRITORIO LIGUORI, NAPOLIMUSSETT, ALAN E., AFTAB KHAN, M. ESPLORAZIONE DEL SOTTOSUOLO. UNA INTRODUZIONE ALLA GEOFISICA APPLICATA ZANICHELLI
|
6 | GEO/11 | 48 | - | - | - | Related or supplementary learning activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Course | Credits | Scientific Disciplinary Sector Code | Contact Hours | Exercise Hours | Laboratory Hours | Personal Study Hours | Type of Activity | Language | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20402177 -
STRATIGRAPHIC GEOLOGY
(objectives)
TO PROVIDE TO THE STUDENT THE KNOWLEDGE OF THE MAIN TOOLS OF THE STRATIGRAPHIC GEOLOGY IN ORDER TO REACH AUTONOMY AND CRITICISM CAPABILITY IN FACING THOSE TOPICS OF THE GEOLOGY THAT NEED A STRATIGRAPHIC APPROACH. APPLICATION ON THE FIELD OF THE CONCEPTS.
-
CIPOLLARI PAOLA
(syllabus)
THE COURSE IS MADE OF THREE MODULES. THE FIRST MODULE PROVIDES THE FUNDAMENTALS OF THE STRATIGRAPHIC NOMENCLATURE. THE MAIN FEATURES OF THE STRTIGRAPHIC UNITS ARE DESCRIBED AND THEIR USE IS GAINED DURING THE EXERCISES. THE SECOND MODULE PROVIDES THE PRINCIPLES OF THE SEQUENCE STRATIGRAPHY WITH APPLICATIONS TO DIFFERENT SEDIMENTARY ENVIRONMENTS AND TO SEISMIC STRATIGRAPHY. THIS MODULE ALSO PROVIDES THE PRINCIPLES OF CYCLOSTRATIGRAPHY AND ASTROCHRONOLOGY. THESE CONCEPTS ARE EXAMINED IN CASE STUDIES FROM LITERATURE. THE THIRD MODULE IS DEDICATED TO REGIONAL STRATIGRAPHY. STARTING FROM A PALAEOGEOGRAPHIC RECONSTRUCTION OF THE MESOZOIC TETHYAN AREA, AN IDEAL ROUTE TROUGH THE MAIN SEDIMENTARY DOMAINS IS FOLLOWED. IN PARTICULAR, THE MAIN BASIN SUCCESSIONS (LA SPEZIA, TOSCANA, UMBRIA-MARCHE, LAGONEGRO AND MOLISE, IMERESE-SICANO BASIN) ARE EXAMINED. SOME CASES OF PELAGIC CARBONATE PLATFORM AND THE TRANSITION PLATFORM/BASIN OF THE GARGANO SUCCESSION ARE STUDIED TOO. FINALLY, THE STRATIGRAPHY OF THE LATIUM-ABRUZZI AND DOLOMITES CARBONATE PLATFORMS IS INVESTIGATED.
(reference books)
INTERNATIONAL SUBCOMMISSION ON STRATIGRAPHIC CLASSIFICATION OF IUGS INTERNATIONAL COMMISSION ON STRATIGRAPHY
(1976) – INTERNATIONAL STRATIGRAPHIC GUIDE. SALVADOR A. (ED.) COE A.L., BOSENCE D.W.J., CHURCH K.D., FLINT S.S., HOWELL J.A., WILSON R.C. (2002) – THE SEDIMENTARY RECORD OF SEA-LEVEL CHANGE. COE A.L. (ED.). THE OPEN UNIVERSITY - CAMBRIDGE UNIVERSITY PRESS. EINSELE G., RICKEN W, SEILACHER A. (EDS.) (1991) – CYCLES AND EVENTS IN STRATIGRAPHY. SPRINGER-VERLAG. GRAHAM WEEDON, 2003. TIME SERIES ANALYSIS AND CYCLOSTRATIGRAPHY: EXAMINING STRATIGRAPHIC RECORDS OF ENVIRONMENTAL CYCLES. CAMBRIDGE UNIVERSITY PRESS. ARTICLES FROM LITERATURE |
9 | GEO/02 | 56 | - | - | - | Core compulsory activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20402178 -
STRUCTURAL GEOLOGY
(objectives)
THE COURSE AIMS TO PROVIDE TOOLS AND METHODS FOR DESCRIPTION, ANALYSIS AND INTERPRETATION OF DUCTILE AND BRITTLE DEFORMATION PROCESSES AFFECTING A VOLUME OF ROCK. THE GOAL IS TO RECONSTRUCT COMPLEX DEFORMATION SEQUENCES FOR INTERPRETING THE REGIONAL GEOLOGICAL EVOLUTION. THE AIM OF THE COURSE IS ALSO TO PRESENT THE STRUCTURES AND STYLES ASSOCIATED WITH REGIONAL TECTONICS.
-
ROSSETTI FEDERICO
(syllabus)
DEFORMATION AND STRAIN; COAXIAL AND NON-COAXIAL DEFORMATION; FINITE AND INCREMENTAL DEFORMATION; HETEROGENEOUS AND HOMOGENEOUS STRAIN; THE ELLIPSOID OF STRAIN; STRAIN STATES AND QUANTIFICATION OF THE FINITE STRAIN. THE STRESS TENSOR AND THE PRINCIPAL AXES OF STRESS; MOHR'S CIRCLES. PRINCIPLES OF RHEOLOGY: DUCTILE AND BRITTLE DEFORMATION; DEFORMATION MECHANISMS; CONSTITUTIVE LAWS AND STRESS-STRAIN RELATIONSHIPS; NEWTONIAN AND NON-NEWTONIAN BEHAVIOUR; CREEP PROCESS IN GEOLOGY; RECOVERY AND RECRYSTALLISATION (STATIC AND DYNAMIC RECRYSTALLISATION PROCESSES); DEFORMATION MAPS FOR MATERIALS OF GEOLOGICAL INTEREST; RHEOLOGY OF THE OCEANIC AND CONTINENTAL LITHOSPHERE. DEFORMATION AND BRITTLE SHEARING: MOHR-COULOMB FAILURE CRITERION; THE GRIFFITH CRITERION. ANDERSONIAN FAULTS: DYNAMIC ANALYSIS AND CLASSIFICATION (STRESS INVERSION). JOINTS AND VEINS. STRUCTURE OF A FAULT ZONE: FAULT CORE AND DAMAGE ZONES; CLASSIFICATION OF FAULT ROCKS. GROWTH OF FAULTS AND THEIR SPATIAL ORGANIZATION; LATERAL PROPAGATION OF FAULTS, OVERLAP, LINKAGE AND ASSOCIATED FRACTURING; KINEMATIC INDICATORS ON FAULT SURFACES; RIEDEL SHEARS (SYNTHETIC AND ANTITHETIC). FAULTS AND EARTHQUAKES: THE TOOLS OF STRUCTURAL GEOLOGY: THE STUDY OF ACTIVE AND EXHUMED SEISMOGENIC FAULTS (PSEUDOTACHYLYTES). DUCTILE DEFORMATION: ROCK FABRICS, PLANO-LINEAR STRUCTURES (FOLIATION AND LINEATION), S; L; S-L TECTONITES AND THEIR TECTONICS SIGNIFICANCE. FOLDING AND ASSOCIATED STRUCTURES (TYPES AND CLASSIFICATION; INTERFERENCE AND OVERPRINTING CRITERIA). DEFORMATION AND METAMORPHISM: BLASTESIS-DEFORMATION RELATIONSHIPS (MESO-AND MICRO-SCALE); DUCTILE SHEAR ZONES (MYLONITES) AND THEIR GEOLOGICAL SIGNIFICANCE, KINEMATIC CRITERIA (MESO-AND MICRO-SCALE). SHEAR ZONES AND FLUID CIRCULATION: FLUID-ROCK INTERACTION AND THE STRUCTURAL CONTROLS ON HYDROTHERMAL MINERALIZATION. STRUCTURES ASSOCIATION AT REGIONAL SCALE AND THE STYLES OF REGIONAL TECTONICS. EXTENSIONAL TECTONICS (RIFTING): GEOMETRY OF RIFTING; MODELS PURE- AND SIMPLE-SHEAR MODELS: REGIONAL EXAMPLES; RHEOLOGY OF THE LITHOSPHERE AND TYPES OF RIFTING; THE RIFT-DRIFT TRANSITION; RIFTING AND SEDIMENTATION: INTERACTIONS BETWEEN DEFORMATION, SEDIMENTATION AND EROSION. COMPRESSIONAL TECTONICS: "SUBDUCTION FACTORY" AND OROGENY; DYNAMICS OF OROGENIC SYSTEMS; SUBDUCTION OROGENS, COLLISION AND SUBDUCTION-ACCRETION OROGENS: STRUCTURAL STYLES, THERMO-BARIC REGIMES AND TECTONIC EVOLUTION; THE OROGENIC WEDGE AND ITS DYNAMICS (EVOLUTION AND STYLES OF THRUST-AND-FOLD BELTS). STRIKE-SLIP TECTONICS: STRUCTURAL CHARACTERISTICS AND ASSOCIATED STRUCTURES; STRIKE-SLIP AND TRANSFORM FAULTS; STRIKE-SLIP INTRAPLATE TECTONICS: REGIONAL EXAMPLES. STRUCTURAL GEOLOGY AND ITS APPLICATIONS: ORE DEPOSITS, GEOTHERMAL RESERVOIRS AND GEOTECHNICAL PROBLEMS (EXAMPLES).
(reference books)
DURING THE COURSE PRACTICAL EXERCISES WILL BE CARRIED OUT FOCUSED ON THE ANALYSIS AND INTERPRETATION OF STRUCTURAL DATA. AT THE END OF THE COURSE, A WEEK-LONG CAMP IS SCHEDULED AIMED TO FIX THE BASIC CONCEPTS THOUGH ANALYSIS OF GEOLOGICAL STRUCTURES IN THE FIELD . THE BASIC READINGS:
-G. DAVIS, S. REYNOLDS, "STRUCTURAL GEOLOGY OF ROCKS AND REGIONS", WILEY, 1996. -B. A. VAN DER PLUIJM, S. MARSHAK. W.W, "EARTH STRUCTURE" (2ND ED.), NORTON, 2004. -C. W. PASSCHIER, R. A. J. TROUW, "MICROTECTONICS” (2ND ED.), SPRINGER, 2006. COMPLEMENTARY READINGS: -N. PRICE, J. COSGROVE, "ANALYSIS OF GEOLOGICAL STRUCTURES", CAMBRIDGE UNIVERSITY PRESS, 1990. -R. TWISS, E. M: MOORES, "STRUCTURAL GEOLOGY" (2ND ED.), FREEMAN, 2007. -R. H. GROSHONG, "3-D STRUCTURAL GEOLOGY: A PRACTICAL GUIDE TO SURFACE AND SUBSURFACE MAP INTERPRETATION" (2ND ED.), SPRINGER, 2006. -J. SUPPE "PRINCIPLES OF STRUCTURAL GEOLOGY", PRENTICE-HALL, 1985. -W. BURBANK, R. S. ANDERSON "TECTONIC GEOMORPHOLOGY", BLACKWELL, 2005.
-
CIFELLI FRANCESCA
(syllabus)
ACTIVITY ON THE FIELD FOR A PERIOD OF SEVEN DAYS WEEKLY WITH THE PURPOSE OF FIXING THE BASIC CONCEPTS DISCUSSED OVER THE COURSE AND TO PRESENT IN DIFFERENT STYLES DEFORMATION CONTEXT OF REGIONAL TECTONICS.
(reference books)
VARIOUS MATERIAL PROVIDED BY THE TEACHER
|
9 | GEO/03 | 56 | - | - | - | Core compulsory activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20402387 -
FIELD GEOLOGY AND THEMATIC MAPS
(objectives)
TO PROVIDE PRINCIPAL METHODS FOR THE GEOLOGICAL SURVEY, MAINLY THROUGH FIELD WORK AND LAB ACTIVITIES.
TO DEVELOP THE 3D VISION OF THE ROCK BODIES AND GEOLOGICAL STRUCTURES, STARTING FROM THE OUTCROPS, THROUGH MULTIDISCIPLINARY ACTIVITIES BOTH IN THE FIELD AND IN LABS, ON GEOLOGICAL PROBLEMS WITH MEDIUM-HIGH DEGREE OF DIFFICULTY.
-
COSENTINO DOMENICO
(syllabus)
TO ADDRESS SOME BASIC NOTIONS RELATIVE TO THE GEOLOGICAL SURVEY AND MAPPING. THE GEOLOGICAL SURVEY AS A TOOL FOR RECONSTRUCTING 3D GEOLOGICAL AND PHYSICAL MODEL OF THE SUBSURFACE THROUGH THE INTEGRATION OF BOTH SURFACE AND SUBSURFACE GEOLOGICAL DATA, BOREHOLES INFORMATION AND PHYSICAL PROPERTIES OF BOTH ROCK AND INCOHERENT MATERIALS.
(reference books)
PHYSICAL PROPERTIES OF ROCKS AND INCOHERENT MATERIALS; SUBSURFACE GEOLOGY, CONSOLIDATED AND UNCONSOLIDATED PLIO-QUATERNARY COVERS OF THE MAIN REGIONS OF CENTRAL ITALY; GEOMETRICAL AND TECHNICAL CHARACTERIZATION OF THE MAIN DISCONTINUITIES AFFECTING ROCKS TO DEFINE THE QUALITY OF ROCK MASSES. THE GEOLOGICAL SURVEY FOR SEISMIC MICROZONATION PURPOSES. THE PRACTICAL ACTIVITIES OF THIS COURSE WILL BE DONE IN FIELD TRIPS LEADED IN DIFFERENT GEOLOGICAL SETTINGS FOR WORKING ON KEY AREAS OF THE CENTRAL APENNINES TO EXPERIENCE THE MAIN ACTIVITIES RELATED TO THE GEOLOGICAL SURVEY AND MAPPING: TO ANALYSE THE BEDROCK AND THE INCOHERENT QUATERNARY COVERS; TO CHARACTERIZE GEOMETRY AND TECHNICAL PROPERTIES OF ALL THE DISCONTINUITIES AFFECTING ROCK MASSES; TO COLLECT SURFACE AND SUBSURFACE DATA, PHYSICAL PROPERTIES OF ROCKS AND INCOHERENT PLIO-QUATERNARY COVERS FOR RECONSTRUCTING THE PHYSICAL AND GEOLOGICAL MODEL OF THE SUBSURFACE. EACH FIELD TRIP WILL BE PREPARED IN CLASSROOM, LOOKING AT BOTH THE MORPHOLOGICAL AND THE GEOLOGICAL SETTING OF THE AREA. SUBSEQUENTLY, ONE DAY OF FIELD TRIP ALLOW STUDENTS TO COLLECT GEOLOGICAL DATA FROM THE KEY AREA. LATER ON, DATA COLLECTED WILL BE ANALYSED AND PROCESSED IN THE LAB. LAB ACTIVITIES WILL BRING STUDENTS TO PROVIDE THE GEOLOGICAL MAP OF THE SURVEYED AREA, TOGETHER WITH SOME THEMATIC MAPS, INCLUDING MAP KEY AND GEOLOGICAL CROSS-SECTIONS. FOR EACH FIELD TRIP, STUDENTS WILL PROVIDE, ALSO, A REPORT ON THE MAIN RESULTS OF THE GEOLOGICAL SURVEY. THE PRACTICAL ACTIVITIES OF THIS COURSE WILL CONCLUDE IN A FIELD SCHOOL FINALIZED TO PRODUCE THEMATIC MAPS AND RECONSTRUCT THE GEOLOGICAL AND PHYSICAL MODEL OF THE AREA IN REGION OF MEDIUM-HIGH DEGREE OF DIFFICULTY. SCESI L., PAPINI M., GATTINONI P. – GEOLOGIA APPLICATA: IL RILEVAMENTO GEOLOGICO-TECNICO. VOL. 1, SECONDA EDIZIONE. CASA EDITRICE AMBROSIANA. CEAEDIZIONI, 2006.
CREMONINI G. - RILEVAMENTO GEOLOGICO. - ED. PITAGORA, BOLOGNA, 1985. GEOLOGICAL MAPS, TOPOGRAPHIC MAPS, AERO PHOTOS, AND ARTICLES ON THE GEOLOGY OF THE DIFFERENT AREAS THAT WILL BE OBJECT OF THE FIELD TRIPS, WILL BE PROVIDED BY THE PERSONNEL RESPONSIBLE FOR THE COURSE.
-
BALLATO PAOLO
(syllabus)
TO ADDRESS SOME BASIC NOTIONS RELATIVE TO THE GEOLOGICAL SURVEY AND MAPPING. THE GEOLOGICAL SURVEY AS A TOOL FOR RECONSTRUCTING 3D GEOLOGICAL AND PHYSICAL MODEL OF THE SUBSURFACE THROUGH THE INTEGRATION OF BOTH SURFACE AND SUBSURFACE GEOLOGICAL DATA, BOREHOLES INFORMATION AND PHYSICAL PROPERTIES OF BOTH ROCK AND INCOHERENT MATERIALS.
(reference books)
PHYSICAL PROPERTIES OF ROCKS AND INCOHERENT MATERIALS; SUBSURFACE GEOLOGY, CONSOLIDATED AND UNCONSOLIDATED PLIO-QUATERNARY COVERS OF THE MAIN REGIONS OF CENTRAL ITALY; GEOMETRICAL AND TECHNICAL CHARACTERIZATION OF THE MAIN DISCONTINUITIES AFFECTING ROCKS TO DEFINE THE QUALITY OF ROCK MASSES. THE GEOLOGICAL SURVEY FOR SEISMIC MICROZONATION PURPOSES. THE PRACTICAL ACTIVITIES OF THIS COURSE WILL BE DONE IN FIELD TRIPS LEADED IN DIFFERENT GEOLOGICAL SETTINGS FOR WORKING ON KEY AREAS OF THE CENTRAL APENNINES TO EXPERIENCE THE MAIN ACTIVITIES RELATED TO THE GEOLOGICAL SURVEY AND MAPPING: TO ANALYSE THE BEDROCK AND THE INCOHERENT QUATERNARY COVERS; TO CHARACTERIZE GEOMETRY AND TECHNICAL PROPERTIES OF ALL THE DISCONTINUITIES AFFECTING ROCK MASSES; TO COLLECT SURFACE AND SUBSURFACE DATA, PHYSICAL PROPERTIES OF ROCKS AND INCOHERENT PLIO-QUATERNARY COVERS FOR RECONSTRUCTING THE PHYSICAL AND GEOLOGICAL MODEL OF THE SUBSURFACE. EACH FIELD TRIP WILL BE PREPARED IN CLASSROOM, LOOKING AT BOTH THE MORPHOLOGICAL AND THE GEOLOGICAL SETTING OF THE AREA. SUBSEQUENTLY, ONE DAY OF FIELD TRIP ALLOW STUDENTS TO COLLECT GEOLOGICAL DATA FROM THE KEY AREA. LATER ON, DATA COLLECTED WILL BE ANALYSED AND PROCESSED IN THE LAB. LAB ACTIVITIES WILL BRING STUDENTS TO PROVIDE THE GEOLOGICAL MAP OF THE SURVEYED AREA, TOGETHER WITH SOME THEMATIC MAPS, INCLUDING MAP KEY AND GEOLOGICAL CROSS-SECTIONS. FOR EACH FIELD TRIP, STUDENTS WILL PROVIDE, ALSO, A REPORT ON THE MAIN RESULTS OF THE GEOLOGICAL SURVEY. THE PRACTICAL ACTIVITIES OF THIS COURSE WILL CONCLUDE IN A FIELD SCHOOL FINALIZED TO PRODUCE THEMATIC MAPS AND RECONSTRUCT THE GEOLOGICAL AND PHYSICAL MODEL OF THE AREA IN REGION OF MEDIUM-HIGH DEGREE OF DIFFICULTY. SCESI L., PAPINI M., GATTINONI P. – GEOLOGIA APPLICATA: IL RILEVAMENTO GEOLOGICO-TECNICO. VOL. 1, SECONDA EDIZIONE. CASA EDITRICE AMBROSIANA. CEAEDIZIONI, 2006.
CREMONINI G. - RILEVAMENTO GEOLOGICO. - ED. PITAGORA, BOLOGNA, 1985. GEOLOGICAL MAPS, TOPOGRAPHIC MAPS, AERO PHOTOS, AND ARTICLES ON THE GEOLOGY OF THE DIFFERENT AREAS THAT WILL BE OBJECT OF THE FIELD TRIPS, WILL BE PROVIDED BY THE PERSONNEL RESPONSIBLE FOR THE COURSE. |
9 | GEO/02 | 48 | - | - | - | Core compulsory activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20402384 -
VOLCANOLOGY AND GEOLOGY OF VOLCANIC AREAS
(objectives)
THE COURSE PROVIDES TO THE STUDENTS THE BASIC CONCEPTS USEFUL FOR UNDERSTAND THE ERUPTIVE PROCESSES AND THE DEPOSITIONAL MECHANISM OF THE EFFUSIVE AND EXPLOSIVE DEPOSITS, STARTING FROM THE ANALYSES, CHARACTERIZATION AND INTERPRETATION OF THE DEPOSITS . MAIN TOPIC OF THE COURSE IS TO JOINT THE FIELD OBSERVATION TO THE THEORETICAL CONCEPTS.
FOR THE COMPREHENSION OF THE ARGUMENTS DEALT DURING THE COURSE IT IS NECESSARY TO HAVE CONCEPTS OF SEDIMENTOLOGY, PETROGRAPHY AND GEOCHEMISTRY.
-
GIORDANO GUIDO
(syllabus)
INTRODUCTION (SHORT HISTORY OF THE STUDIES IN VOLCANOLOGY; TERMINOLOGY OF THE VOLCANIC PRODUCTS; FACIES ANALYSES OF VOLCANIC DEPOSITS; PYROCLASTIC AND VOLCANOCLASTIC ROCKS AS KEY- ELEMENTS TO INTERPRET THE EXPLOSIVE AND POST ERUPTIVE PROCESSES IN THE RELATED ENVIRONMENTS).
(reference books)
CLASSIFICATION OF THE EFFUSIVE AND EXPLOSIVE DEPOSITS. COMPONENTS, TEXTURES AND STRUCTURES OF VOLCANIC AND VOLCANICLASTIC DEPOSITS. CLASSIFICATION OF PYROCLASTIC AND VOLCANOCLASTIC DEPOSITS. DEPOSITIONAL AND EROSIVE PROCESSES IN VOLCANIC AREAS. MORPHOLOGY OF VOLCANOES: MONOGENETIC AND POLYGENETIC VOLCANOES. THE PROCESS OF MAGMA RISING: THE EFFUSIVE PROCESS (LAVA FLOWS IN SUBAERIAL AND SUBACQUEOUS ENVIRONMENTS). MAGMA ESSOLUTION AND FRAGMENTATION (THE EXPLOSIVE ERUPTIONS, STYLES OF MAGMA FRAGMENTATION , RELATED MICRO-TEXTURE). TRANSPORT AND EMPLACEMENT MECHANISM OF THE EFFUSIVE AND EXPLOSIVE PRODUCTS AND RELATED DEPOSITS IN SUBAERIAL AND SUBACQUEOUS ENVIRONMENTS. BALLISTIC PATHWAYS OF LARGE CLASTS . MAIN CHARACTERISTICS OF THE ERUPTIONS AND CLASSIFICATION OF THE ERUPTIVE STYLES. MAIN CONCEPTS OF VOLCANIC HAZARD AND RISK. FROM MAGMA TO TEPHRA: MODELING PHYSICAL PROCESSES OF EXPLOSIVE VOLCANIC ERUPTIONS. EDITED BY ARMIN FREUNDT AND MAURO ROSI, 2000. ELSEVIER.
VOLCANIC SUCCESSIONS. CAS R.A.F. & WRIGHT J.V., 1987. ALLEN & UNWIN PYROCLASTIC ROCKS R.V. FISHER AND H.-U. SCHMINCKE, 1984. SPRINGER. ENCICLOPEDIA OF VOLCANOES. EDITED BY HARALDUR SIGURDSSON, BRUCE HOUGHTON, HAZEL RYMER, JOHN STIX, STEVE MCNUTT, 2000. ACADEMIC PRESS. FUNDAMENTALS OF PHYSICAL VOLCANOLOGY. E.A. PARFITT, L. WILSON 2008. BLACKWELL, OXFORD, PAPERBACK, 256 PAGES, ISBN: 978-0-632-05443-5 ORARIO DI RICEVIMENTO LUNEDì ORE 11-12
-
VONA ALESSANDRO
(syllabus)
INTRODUCTION (SHORT HISTORY OF THE STUDIES IN VOLCANOLOGY; TERMINOLOGY OF THE VOLCANIC PRODUCTS; FACIES ANALYSES OF VOLCANIC DEPOSITS; PYROCLASTIC AND VOLCANOCLASTIC ROCKS AS KEY- ELEMENTS TO INTERPRET THE EXPLOSIVE AND POST ERUPTIVE PROCESSES IN THE RELATED ENVIRONMENTS).
(reference books)
CLASSIFICATION OF THE EFFUSIVE AND EXPLOSIVE DEPOSITS. COMPONENTS, TEXTURES AND STRUCTURES OF VOLCANIC AND VOLCANICLASTIC DEPOSITS. CLASSIFICATION OF PYROCLASTIC AND VOLCANOCLASTIC DEPOSITS. DEPOSITIONAL AND EROSIVE PROCESSES IN VOLCANIC AREAS. MORPHOLOGY OF VOLCANOES: MONOGENETIC AND POLYGENETIC VOLCANOES. THE PROCESS OF MAGMA RISING: THE EFFUSIVE PROCESS (LAVA FLOWS IN SUBAERIAL AND SUBAQUEOUS ENVIRONMENTS). MAGMA EXSOLUTION AND FRAGMENTATION (THE EXPLOSIVE ERUPTIONS, STYLES OF MAGMA FRAGMENTATION, RELATED MICRO-TEXTURE). TRANSPORT AND EMPLACEMENT MECHANISM OF THE EFFUSIVE AND EXPLOSIVE PRODUCTS AND RELATED DEPOSITS IN SUBAERIAL AND SUBAQUEOUS ENVIRONMENTS. BALLISTIC PATHWAYS OF LARGE CLASTS. MAIN CHARACTERISTICS OF THE ERUPTIONS AND CLASSIFICATION OF THE ERUPTIVE STYLES. MAIN CONCEPTS OF VOLCANIC HAZARD AND RISK. FROM MAGMA TO TEPHRA: MODELING PHYSICAL PROCESSES OF EXPLOSIVE VOLCANIC ERUPTIONS. EDITED BY ARMIN FREUNDT AND MAURO ROSI, 2000. ELSEVIER.
VOLCANIC SUCCESSIONS. CAS R.A.F. & WRIGHT J.V., 1987. ALLEN & UNWIN PYROCLASTIC ROCKS R.V. FISHER AND H.-U. SCHMINCKE, 1984. SPRINGER. ENCYCLOPEDIA OF VOLCANOES. EDITED BY HARALDUR SIGURDSSON, BRUCE HOUGHTON, HAZEL RYMER, JOHN STIX, STEVE MCNUTT, 2000. ACADEMIC PRESS. FUNDAMENTALS OF PHYSICAL VOLCANOLOGY. E.A. PARFITT, L. WILSON 2008. BLACKWELL, OXFORD, PAPERBACK, 256 PAGES, ISBN: 978-0-632-05443-5 |
9 | GEO/08 | 56 | - | - | - | Core compulsory activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Course | Credits | Scientific Disciplinary Sector Code | Contact Hours | Exercise Hours | Laboratory Hours | Personal Study Hours | Type of Activity | Language | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20410058 -
GEOLOGIA DEGLI IDROCARBURI
(objectives)
TO GIVE THE STUDENTS A THEORETICAL BASIS TO APPLICATIONS IN THE RESEARCH AND DEVELOPMENT OF NATURAL HYDROCARBONS RESERVOIRS
-
SALVINI FRANCESCO
(syllabus)
INTRODUCTION TO PETROLEUM GEOLOGY. GEOLOGY APLIED TO RESERARCH AND DEVELOPMENT OF HYDROCARBONS. THE ROLO OF HYDROCARCON ENERGY IN THE PRESENT DAY SOCIETY. STATISTICS ON RESEARCH AND DEVELOPMENT OF HYDROCARBON RESERVOIRS. THE ROLE OF THE PETROLEUM GEOLOGIST. NATURE ANS ORIGIN OF HYDROCARBONS. HYDROCARBON COMPOSITIONS AND CLASSIFICATION. THE PETROLEUM ACCUMULATION CYCLE. ORGANIC AND INORGANIC NATURE. SOURCE ROCKS. PRINCIPLES OF TRASFORMATION OF ORGANIC MATTER INTO HYDROCARBONS. MIGRATION PROCESSES AND TRAPPING. ACCUMULTION OF PETROLEUM. RESERVOIR ROCKS. HYDROCARBON TRAPS ANS THEIR CLASSIFICATION. WELL LOGS TYPES AND INTERPRETATION. SEISMIC EXPLORATION. RESEARCH TECHNIQUES RELATED TO GEOLOGICAL CONTEXTS. PREPARATION OF BALANCED CROSS SECTIONS AND THEIR RESTORATION. PRACTICAL WORK. ONE DAY FIELD TRIP TO OUTCROPS OF SOURCE ROCKS, RESERVOIR ROCKS AND VISIT TO AN ACTIVE OIL FIELD.
(reference books)
- J. GLUYAS, R. SWARBRICK - PETROLEUM GEOSCIENCE - BLACKWELL PUBLISHING (2003).
- SELLEY - ELEMENTS OF PETROLEUM GEOLOGY-SECOND EDITION ACADEMIC PRESS (1998). - N.B. WOODWARD, S.E. BOYER, J. SUPPE - BALANCED GEOLOGICAL CROSS-SECTIONS: AN ESSENTIAL TECHNIQUE IN GEOLOGICAL RESEARCH AND EXPLORATION. - AMERICAN GEOPHYSICAL UNION. R.C. (1989). |
6 | GEO/03 | 48 | - | - | - | Core compulsory activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20402398 -
INTERPRETATION OF SEISMIC SECTIONS AND WELL-LOG
(objectives)
THE COURSE AIMS TO ENABLE STUDENTS TO UNDERSTAND THE ROLE OF SEISMIC OIL EXPLORATION, LEARNING TO INTERPRET THE SEISMIC LINES AND TO CORRELATE THEM WITH THE DATA OBTAINED FROM THE MULTIDISCIPLINARY DEEP WELLS .
|
6 | GEO/11 | 48 | - | - | - | Core compulsory activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20402409 -
REMOTE SENSING
(objectives)
THE REMOTE SENSING COURSE FOCUSES ON THE MAIN ASPECTS RELATED TO THE ANALYSIS OF REMOTELY SENSED IMAGES ACQUIRED BOTH WITH PASSIVE AND ACTIVE SENSORS. THE ANALYSES WILL BE AIMED TO THE STUDY OF GEO-RESOURCES, OF THE TERRITORY, OF THE ENVIRONMENT AND OF THE TECTONICS. THE AIM OF THE COURSE IS TO PROVIDE THE BASIC CULTURE IN ORDER TO BE ABLE TO SELECT, TO PROCESS AND TO INTERPRET THE PROPER SATELLITE IMAGES FOR SPECIFIC GEOLOGICAL/ENVIRONMENTAL APPLICATIONS. FOR THIS PURPOSE THE COURSE INCLUDE BOTH THEORETICAL LESSONS ON THE BASIC PRINCIPLES OF REMOTE SENSING AND LAB EXERCISES ON THE SPECTRAL, RADIOMETRIC AND GEOMETRIC CHARACTERISTICS OF SEVERAL SATELLITE IMAGES
|
6 | GEO/03 | 48 | - | - | - | Core compulsory activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Course | Credits | Scientific Disciplinary Sector Code | Contact Hours | Exercise Hours | Laboratory Hours | Personal Study Hours | Type of Activity | Language | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20410093 -
BACINI SEDIMENTARI PER LE RISORSE NATURALI
(objectives)
A deeper understanding of the subsurface sedimentary basin is also essential to avoid conflicts in the use of aquifers, explore the subsurface for the low and medium enthalpy geothermal energy and CO2 storage and for the ' identification of safe sites for storage of nuclear waste. The course aims to provide students with a theoretical and practical basis for the use of modern techniques for the dynamic reconstruction, architecture and warmth of sedimentary basins.
-
CORRADO SVEVA
(syllabus)
PART 1 - PRINCIPLES FOR THE STUDY OF SEDIMENTARY BASINS - GENERALITIES: 1. WHAT ARE SEDIMENTARY BASINS; 2. SEDIMENTARY BASINS AS COMPLEX SYSTEMS; 3. CLASSIFICATION CRITERIA; 4.PRINCIPAL FEATURES: DURATION; HEAT FLOW; DESTINY; SUBSIDENCE; PRODUCTION OF SEDIMENTS; CONSERVATION POTENTIAL (UPLIFT AND EXHUMATION); 5. FROM THE SEDIMENTARY BASIN TO THE DEFINITION OF CONVENTIONAL AND NON-CONVENTIONAL OIL AND GEOTHERMAL SYSTEMS (MEDIUM AND LOW ENTHALPY); CHARACTERS OF A STORAGE SITE (EXAMPLES).
(reference books)
PART 2 - DYNAMICS OF SEDIMENTARY BASIN FORMATION 1. EXTENSIONAL BASINS; 2. FLEXURAL BASINS. PART 3 - SUBSIDENCE AND BURIAL HISTORY: 1. COMPACTION PATHS OF POROUS SEDIMENTS; 2. POROSITY AND PERMEABILITY OF SEDIMENTS AND SEDIMENTARY ROCKS; 3. SUBSIDENCE AND BACKSTRIPPING HISTORY; 4. TECTONIC SUBSIDENCE; 5. ONE-DIMENSIONAL MODELING (PRACTICE) PART 4 - THERMAL HISTORY: ARRHENIUS EQUATION AND THERMAL MATURITY INDICES; 2. FACTORS AFFECTING TEMPERATURE AND PALEO-TEMPERATURE IN SEDIMENTARY BASINS; 3. THERMAL AND THERMOS-CHRONOLOGICAL CALIBRATION METHODS AND PARAMETERS (ORGANIC MATTER DISPERSED IN SEDIMENTS; LOW TEMPERATURE THERMOS-CHRONOLOGY; CLAY MINERALOGY; CORRELATIONS) 4. EXAMPLES PART 5 - PETROLEUM SYSTEM MODELLING: 1.SOURCE ROCKS FOR THE PRODUCTION OF HYDROCARBONS 1.COMPOSITION AND PRODUCTION PROCESSES; 2. SEDIMENTATION AND PRESERVATION OF ORGANIC MATTER DISPERSED IN SEDIMENTS; 3. CLASSIFICATION AND THEORIES ON THE ORIGINS OF KEROGEN IN EOGENENIS PHASE; 4. MECHANISMS AND PROCESSES OF SOURCE ROCKS (CURRENT AND PAST CASE HISTORIES WITH SOME EXAMPLES FROM THE WORLD); 5. CATAGENIS AND METAGENESIS; 6. ONE-DIMENSIONAL MODELING (PRACTICE) FINAL EXERCISE: 1. PRESENTATION OF A CASE OF PETROLEUM SYSTEM MODELING (CREATION OF GEOLOGICAL-GEOCHEMICAL DATABASE; MONODIMENSIONAL MODELING, FINAL PPT PRESENTATION). PHILIP A. ALLEN, JOHN R. ALLEN, 2013. ANALYSIS: PRINCIPLES AND APPLICATION TO PETROLEUM PLAY ASSESSMENT, 3RD EDITION BASIN. ISBN: 978-0-470-67377-5. 632 PAGES
SELECTED SCIENTIFIC ARTICLES HANDOUTS OF THE LECTURES |
6 | GEO/03 | 48 | - | - | - | Core compulsory activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20402421 -
GEOTHERMICS
(objectives)
THE COURSE IS DESIGNED TO PROVIDE THE FUNDAMENTS FOR THE UNDERSTANDING OF THE CHARACTERISTICS OF GEOTHERMAL SYSTEMS AND THE MAIN METHODS OF PROSPECTING IN WHICH THE PROFESSIONAL GEOLOGIST IS ESSENTIAL
-
GIORDANO GUIDO
(syllabus)
PART I - DEFINITIONS AND INTRODUCTORY CONCEPTS
(reference books)
THE HEAT OF THE EARTH: ORIGIN, MEASUREMENT, TRANSPORTATION, GEODYNAMIC ENVIRONMENTS. GEOTHERMAL ENERGY IN THE PANORAMA OF RENEWABLE ENERGY AND LOW CO2 EMISSIONS. PART II - CLASSIFICATION OF GEOTHERMAL RESOURCES STRUCTURE OF GEOTHERMAL AREAS, HEAT SOURCE, THE RESERVOIR, THE CAP ROCKS. RESOURCES OF HIGH, MEDIUM AND LOW ENTHALPY. WATER-DOMINATED SYSTEMS, VAPOR-DOMINATED SYSTEMS, GEOPRESSURED SYSTEMS, DRY ROCK. PART III - GEOTHERMAL EXPLORATION GEOLOGICAL SURVEY METHODOLOGIES: ESTIMATION OF THE AGE, SIZE, DEPTH AND T OF THE HEAT SOURCE, EVALUATION OF THE PRESENCE OF RESERVOIR ROCKS AND CAP ROCKS, PRIMARY AND SECONDARY PERMEABILITY OF THE RESERVOIR AS A FUNCTION OF SURFACE DATA, REMOTE SENSING AND RECONSTRUCTION OF THE GEOLOGICAL MODEL; EXPLORATION OF THE CAP ROCK. HYDROGEOLOGICAL AND GEOCHEMICAL SURVEY METHODOLOGIES: ESTIMATION OF THE TEMPERATURE AND COMPOSITION OF THE GEOTHERMAL FLUID FROM HOT SPRINGS AND GASES AT THE SURFACE EVALUATION OF THE DEEP CIRCULATION, AND THE RECHARGE POTENTIAL OF THE RESERVOIR. GEOPHYSICAL SURVEY METHODS: GRAVIMETRY, GEOELECTRIC, MAGNETOTELLURIC, SEISMIC, RECONSTRUCTION OF THE TEMPERATURE GRADIENT. DEEP-DRILLING: PLANNING, EXECUTION, COMMISSIONING, DOWN HOLE MEASURES. USE OF GIS FOR MANAGING AND MODELING OF GEOTHERMAL SYSTEMS. NUMERICAL MODELING OF GEOTHERMAL SYSTEMS PART IV - REGIONAL GEOTHERMAL A BRIEF HISTORY OF GEOTHERMAL ENERGY IN ITALY, GEOTHERMAL SYSTEMS ASSOCIATED WITH MAGMATIC PROVINCES OF TUSCANY AND LAZIO AND CAMPANIA, EOLIAN ARC ASSOCIATED WITH THE GEOTHERMAL SYSTEM, GEOTHERMAL SYSTEMS OF FORELAND: SARDINIA, THE PIANURA PADANA, SICILY. PART V - USE OF GEOTHERMAL RESOURCES GENERATION OF ELECTRICITY; DIRECT USE OF HOT WATER, THE VERY LOW ENTHALPY GEOTHERMAL AND HEAT PUMPS; INTRODUCTION TO LEGISLATION B. TORO, T. RUSPANDINI TANIA, 2009, NUOVE FRONTIERE DELLE ENERGIE RINNOVABILI. ASPETTI GEOLOGICI, RICERCA, UTILIZZAZIONE. EDITORE: FLACCOVIO DARIO
R. DIPIPPO, 2008, GEOTHERMAL POWER PLANTS: PRINCIPLES, APPLICATIONS, CASE STUDIES AND ENVIRONMENTAL IMPACT, EDITORE: BUTTERWORTH-HEINEMANN A. MANZELLA, C. UNGARELLI, 2011, LA GEOTERMIA, EDITORE: IL MULINO, COLLANA “FARSI UN’IDEA” ORARIO DI RICEVIMENTO LUNEDì ORE 12-13 |
6 | GEO/08 | 48 | - | - | - | Related or supplementary learning activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20410063 -
CAMPO DI FINE BIENNIO
(objectives)
PRACTICAL GEOLOGICAL EXPERIENCES, WITH THE AIM OF LEARNING A GLOBAL APPROACHING TO THE APPLICATIONS OF GEOLOGY (GEOLOGICAL FRAMEWORK, URBANIZATION, LANDSLIDE, WATER RESOURCES, NONRENEWABLE RESOURCES, ENVIRONMENTAL REQUALIFICATIONS, ECT.). CONTACTS WITH PROFESSIONAL GEOLOGY CONTEXT IN SOLVING REAL PROBLEMS.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20410063-1 -
CAMPO DI FINE BIENNIO - I MODULO
(objectives)
PRACTICAL GEOLOGICAL EXPERIENCES, WITH THE AIM OF LEARNING A GLOBAL APPROACHING TO THE APPLICATIONS OF GEOLOGY (GEOLOGICAL FRAMEWORK, URBANIZATION, LANDSLIDE, WATER RESOURCES, NONRENEWABLE RESOURCES, ENVIRONMENTAL REQUALIFICATIONS, ECT.). CONTACTS WITH PROFESSIONAL GEOLOGY CONTEXT IN SOLVING REAL PROBLEMS.
-
MAZZA ROBERTO
(syllabus)
A COMPARISON OF VARIOUS GEOLOGICAL SITUATIONS IS PROPOSED TO STUDENTS WITH THE GOAL TO STIMULATE FROM THEIR SIDE THE SOLUTIONS BY APPLICATIONS WHICH AIM AT DEFINING, IN TERMS OF GEOLOGICAL, ISSUES FOR PROJECT WORKS AND MITIGATION OF GEOLOGICAL RISK MANAGEMENT.
(reference books)
THIS LEARNING FIELDWORK IS INTEGRATED BY MEETINGS WITH LOCAL PROFESSIONAL FIRMS AND THE REPRESENTATIVES OF LAND MANAGEMENT AGENCIES. THE LEARNING ACTIVITIES INCLUDE SEMINARS ON RELATED TOPICS. THE EVALUATION ACTS BY A POWER POINT REPORT DONE FROM A RESTRICTED GROUP OF STUDENTS. VARIOUS MATERIAL PROVIDED BY THE TEACHER
-
DELLA MONICA GIUSEPPE
(syllabus)
A COMPARISON OF VARIOUS GEOLOGICAL SITUATIONS IS PROPOSED TO STUDENTS WITH THE GOAL TO STIMULATE FROM THEIR SIDE THE SOLUTIONS BY APPLICATIONS WHICH AIM AT DEFINING, IN TERMS OF GEOLOGICAL, ISSUES FOR PROJECT WORKS AND MITIGATION OF GEOLOGICAL RISK MANAGEMENT.
(reference books)
THIS LEARNING FIELDWORK IS INTEGRATED BY MEETINGS WITH LOCAL PROFESSIONAL FIRMS AND THE REPRESENTATIVES OF LAND MANAGEMENT AGENCIES. THE LEARNING ACTIVITIES INCLUDE SEMINARS ON RELATED TOPICS. THE EVALUATION ACTS BY A POWER POINT REPORT DONE FROM A RESTRICTED GROUP OF STUDENTS. VARIOUS MATERIAL PROVIDED BY THE TEACHER
|
1 | GEO/05 | - | - | - | - | Other activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20410063-2 -
CAMPO DI FINE BIENNIO - II MODULO
(objectives)
PRACTICAL GEOLOGICAL EXPERIENCES, WITH THE AIM OF LEARNING A GLOBAL APPROACHING TO THE APPLICATIONS OF GEOLOGY (GEOLOGICAL FRAMEWORK, URBANIZATION, LANDSLIDE, WATER RESOURCES, NONRENEWABLE RESOURCES, ENVIRONMENTAL REQUALIFICATIONS, ECT.). CONTACTS WITH PROFESSIONAL GEOLOGY CONTEXT IN SOLVING REAL PROBLEMS.
-
MOLIN PAOLA
(syllabus)
A COMPARISON OF VARIOUS GEOLOGICAL SITUATIONS IS PROPOSED TO STUDENTS WITH THE GOAL TO STIMULATE FROM THEIR SIDE THE SOLUTIONS BY APPLICATIONS WHICH AIM AT DEFINING, IN TERMS OF GEOLOGICAL, ISSUES FOR PROJECT WORKS AND MITIGATION OF GEOLOGICAL RISK MANAGEMENT.
(reference books)
THIS LEARNING FIELDWORK IS INTEGRATED BY MEETINGS WITH LOCAL PROFESSIONAL FIRMS AND THE REPRESENTATIVES OF LAND MANAGEMENT AGENCIES. THE LEARNING ACTIVITIES INCLUDE SEMINARS ON RELATED TOPICS. THE EVALUATION ACTS BY A POWER POINT REPORT DONE FROM A RESTRICTED GROUP OF STUDENTS. hand-outs provided by the professor
-
BELLATRECCIA FABIO
(syllabus)
A COMPARISON OF VARIOUS GEOLOGICAL SITUATIONS IS PROPOSED TO STUDENTS WITH THE GOAL TO STIMULATE FROM THEIR SIDE THE SOLUTIONS BY APPLICATIONS WHICH AIM AT DEFINING, IN TERMS OF GEOLOGICAL, ISSUES FOR PROJECT WORKS AND MITIGATION OF GEOLOGICAL RISK MANAGEMENT.
(reference books)
THIS LEARNING FIELDWORK IS INTEGRATED BY MEETINGS WITH LOCAL PROFESSIONAL FIRMS AND THE REPRESENTATIVES OF LAND MANAGEMENT AGENCIES. THE LEARNING ACTIVITIES INCLUDE SEMINARS ON RELATED TOPICS. THE EVALUATION ACTS BY A POWER POINT REPORT DONE FROM A RESTRICTED GROUP OF STUDENTS. VARIOUS MATERIAL PROVIDED BY THE TEACHER
-
MAZZA ROBERTO
(syllabus)
A COMPARISON OF VARIOUS GEOLOGICAL SITUATIONS IS PROPOSED TO STUDENTS WITH THE GOAL TO STIMULATE FROM THEIR SIDE THE SOLUTIONS BY APPLICATIONS WHICH AIM AT DEFINING, IN TERMS OF GEOLOGICAL, ISSUES FOR PROJECT WORKS AND MITIGATION OF GEOLOGICAL RISK MANAGEMENT.
(reference books)
THIS LEARNING FIELDWORK IS INTEGRATED BY MEETINGS WITH LOCAL PROFESSIONAL FIRMS AND THE REPRESENTATIVES OF LAND MANAGEMENT AGENCIES. THE LEARNING ACTIVITIES INCLUDE SEMINARS ON RELATED TOPICS. THE EVALUATION ACTS BY A POWER POINT REPORT DONE FROM A RESTRICTED GROUP OF STUDENTS. VARIOUS MATERIAL PROVIDED BY THE TEACHER
|
1 | GEO/05 | - | - | - | - | Other activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20410063-3 -
CAMPO DI FINE BIENNIO - III MODULO
(objectives)
PRACTICAL GEOLOGICAL EXPERIENCES, WITH THE AIM OF LEARNING A GLOBAL APPROACHING TO THE APPLICATIONS OF GEOLOGY (GEOLOGICAL FRAMEWORK, URBANIZATION, LANDSLIDE, WATER RESOURCES, NONRENEWABLE RESOURCES, ENVIRONMENTAL REQUALIFICATIONS, ECT.). CONTACTS WITH PROFESSIONAL GEOLOGY CONTEXT IN SOLVING REAL PROBLEMS.
-
SALVINI FRANCESCO
(syllabus)
A COMPARISON OF VARIOUS GEOLOGICAL SITUATIONS IS PROPOSED TO STUDENTS WITH THE GOAL TO STIMULATE FROM THEIR SIDE THE SOLUTIONS BY APPLICATIONS WHICH AIM AT DEFINING, IN TERMS OF GEOLOGICAL, ISSUES FOR PROJECT WORKS AND MITIGATION OF GEOLOGICAL RISK MANAGEMENT.
(reference books)
THIS LEARNING FIELDWORK IS INTEGRATED BY MEETINGS WITH LOCAL PROFESSIONAL FIRMS AND THE REPRESENTATIVES OF LAND MANAGEMENT AGENCIES. THE LEARNING ACTIVITIES INCLUDE SEMINARS ON RELATED TOPICS. THE EVALUATION ACTS BY A POWER POINT REPORT DONE FROM A RESTRICTED GROUP OF STUDENTS. VARIOUS MATERIAL PROVIDED BY THE TEACHER
-
TUCCIMEI PAOLA
(syllabus)
A COMPARISON OF VARIOUS GEOLOGICAL SITUATIONS IS PROPOSED TO STUDENTS WITH THE GOAL TO STIMULATE FROM THEIR SIDE THE SOLUTIONS BY APPLICATIONS WHICH AIM AT DEFINING, IN TERMS OF GEOLOGICAL, ISSUES FOR PROJECT WORKS AND MITIGATION OF GEOLOGICAL RISK MANAGEMENT.
(reference books)
THIS LEARNING FIELDWORK IS INTEGRATED BY MEETINGS WITH LOCAL PROFESSIONAL FIRMS AND THE REPRESENTATIVES OF LAND MANAGEMENT AGENCIES. THE LEARNING ACTIVITIES INCLUDE SEMINARS ON RELATED TOPICS. THE EVALUATION ACTS BY A POWER POINT REPORT DONE FROM A RESTRICTED GROUP OF STUDENTS. My contribution deals with: Geochemical composition of main springs and its interpretation to reconstruct hydrogeological circuits Soil gas (radon) measurements: geochemical prospecting and environmental hazard VARIOUS MATERIAL PROVIDED BY THE TEACHER
-
MAZZA ROBERTO
(syllabus)
A COMPARISON OF VARIOUS GEOLOGICAL SITUATIONS IS PROPOSED TO STUDENTS WITH THE GOAL TO STIMULATE FROM THEIR SIDE THE SOLUTIONS BY APPLICATIONS WHICH AIM AT DEFINING, IN TERMS OF GEOLOGICAL, ISSUES FOR PROJECT WORKS AND MITIGATION OF GEOLOGICAL RISK MANAGEMENT.
(reference books)
THIS LEARNING FIELDWORK IS INTEGRATED BY MEETINGS WITH LOCAL PROFESSIONAL FIRMS AND THE REPRESENTATIVES OF LAND MANAGEMENT AGENCIES. THE LEARNING ACTIVITIES INCLUDE SEMINARS ON RELATED TOPICS. THE EVALUATION ACTS BY A POWER POINT REPORT DONE FROM A RESTRICTED GROUP OF STUDENTS. VARIOUS MATERIAL PROVIDED BY THE TEACHER
|
1 | GEO/05 | - | - | - | - | Other activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20402419 -
STAGE
|
3 | - | - | - | - | Per stages e tirocini presso imprese, enti pubblici o privati, ordini professionali (art.10, comma 5, lettera e) | ITA | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20410120 -
PROVA FINALE
|
21 | - | - | - | - | Final examination and foreign language test | ITA | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Course | Credits | Scientific Disciplinary Sector Code | Contact Hours | Exercise Hours | Laboratory Hours | Personal Study Hours | Type of Activity | Language | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20402166 -
HYDROGEOLOGY
(objectives)
ABILITY TO LOCATE, QUANTIFY AND MANAGE GROUNDWATER RESOURCES; ABILITY TO PRODUCE HYDROGEOLOGICAL MAPS; ABILITY TO DESIGN WORKS COLLECTION OF SPRINGS AND UNDERGROUND AQUIFERS; ABILITY TO PRODUCE HYDROGEOLOGICAL SCHEMES AND/OR HYDROGEOLOGICAL MODELS.
-
MASTRORILLO LUCIA
(syllabus)
Aquifers: porosity and effective porosity, primary and secondary porosity. Recharge area, aquiclud and
(reference books)
aquitard. Porous, fractured and karst aquifers. Confined and unconfined aquifers. Shallow and basal aquifers. River - aquifer interaction. Coastal aquifers. Groundwater resources and riserves Regional hydrogeology (Central Italy): Hydrogeological complexes. Comparison between different hydrodynamic attitude: Umbria Marchean domain, Latium Abruzzi domain, volcanic domain. Faults role in hydrogeology. Main springs in the Central Italy Spring: main spring classifications. Spring discharge (recession curves). Spring protection areas. Base Flow of river discharge: Hydrograph basin vs hydrogeological basin Water budget: hydrological cycle. Water budget of hydrographic basin. Groundwater budget of aquifer. Effective infiltration evaluation Groundwater hydrodynamics: Darcy’s law, hydraulic head, hydraulic conductivity and trasmissivity, storage. Drinance. Dupuit theory. Theis and Jacob theory. Pumping test: Step Drawdown Test. Aquifer Pumping Test. Image well theory Hydrochemistry (Hints): hydrogeochemical facies, environmental isotopes Hydrological data collection, elaboration and interpretation: Rainoff, Air temperature, Evapotraspiration, River discharge (Hydrographs analysis) Groundwater flowpaths: piezometric surface. Hydraulic gradient Hydrogeological maps and case studies CELICO P. (1986) – PROSPEZIONI IDROGEOLOGICHE. VOL. I. – LIGUORI ED.
CELICO P. (1988) – PROSPEZIONI IDROGEOLOGICHE. VOL. II. – LIGUORI ED. CASTANY G. (1982) – IDROGEOLOGIA: PRINCIPI E METODI. – FLACCOVIO ED. CIVITA M. (2004) IDROGEOLOGIA APPLICATA E AMBIENTALE. CASA EDITRICE AMBROSIANA. FRANCANI V. (2014) IDROGEOLOGIA AMBIENTALE - CASA EDITRICE AMBROSIANA CUSTODIO E & LLAMAS MR(2007) IDROLOGIA SOTTERRANEA Volume 1 e Volume 2 FLACCOVIO ED. |
6 | GEO/05 | 48 | - | - | - | Core compulsory activities | ITA | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20410095 -
LINGUA INGLESE AVANZATO
|
3 | 24 | - | - | - | Other activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20402385 -
APPLIED GEOPHYSICS
(objectives)
THE STUDENTS WILL LEARN HOW TO APPLY THE PRINCIPLES OF PHYSICS TO STUDY THE EARTH. THIS COURSE PROVIDES A GENERAL INTRODUCTION TO THE MAIN APPLIED-GEOPHYSICS METHODS AND TO THEIR INTERPRETATION.
-
CAMMARANO FABIO
(syllabus)
GRAVITY METHODS
(reference books)
FIGURE OF THE HEARTH: NEWTON’S LAW: ACCELERATION OF GRAVITY:GRAVITATIONAL POTENTIAL: POTENTIAL FIELD EQUATIONS: ELLIPSOID: GRAVITY OF THE EARTH: GEOID: ABSOLUTE MEASUREMENT OF GRAVITY: RELATIVE MEASUREMENT OF GRAVITY: PRINCIPAL METHODS OF DETERMINING GRAVITY: GRAVITY REDUCTIONS: GRAVITY ANOMALIES: INTERPRETATION OF ANOMALIES: DENSITIES OF ROCKS AND MINERALS: GEOLOGICAL INTERPRETATION OF GRAVITY SEISMIC METHODS: SEISMIC WAVES: D’ALAMBERT’ EQUATION: PRIMARY AND SECONDARY WAVES: HARMONIC SOLUTION: SPEED OF SEISMIC BODYILY WAVES: REFLECTION AND REFRACTION FERMAT’S PRINCIPLE: PARTITIONINGOF ENERGY AT AN INTERFACE: REFLECTION AND TRASMISSION COEFFICIENTS, TAVEL TIME OF DIRECTLY RAY, REFLECTED RAY AND REFRACTED RAY: TRAVEL TIME CURVE FOR HORIZONTAL REFLECTOR: GEOMETRY OF REFLECTION PATH FOR DIPPING REFLECTOR: GEOMETRY REFRACTION PATH FOR DIPPING REFLECTOR: RELATION BETWEEN REFLECTION AND REFRACTION RAYPATHS ANDTRAVEL TIME CURVES: REFLECTION AND REFRACTION FIELD METHODS AND EQUIPMENT. INTRODUCTION TO SITE RESPONSE AND GROUND SHAKING ANALYSIS. RESISTIVITY METHODS ELECTICAL PROPERTIES OF MEDIA: OHM’LAW: CONDUCTOR, DIELECTRIC: POTENTIALS IN HOMOGENEUS MEDIA: ELECTICAL PROPERTIES OF ROCK AND MINERALS: CONTINUITY EQUATION: LAPLACE’S EQUATION: DIELECTRIC CONSTANT: RESISTIVITY: RESISTIVITY OF ROCK AND MINERALS. RESISTIVITY OF A POROUSE MEDIA, LABORATORY MEASUREMENT OF RESISTIVITY: MEASUREMENT OF SOIL RESISTIVITY, ELECTROD ARRAY FOR THE RESISTIVITY MEASUREMENT ON THE SUSFACES SOIL: APPARENT RESISTIVITY: WENNER SPREAD: SHLUMBERGER SPREAD: DOUBLE-DIPOLE SPREAD: ELECTRIC DRILLING TWO HORIZONTAL BEDS: EQUIPMENT FOR RESISTIVITY FIELD WORK: INTERPRETATION OF APPARENT RESISTIVITY DATA: TWO LAYER SOIL MODEL AND MULTILAYER SOIL MODEL: INTRODUCTION TO RESISTIVITY TOMOGRAPHY. TELFORD W.M. APPLIED GEOPHYSICS CAMBRIDGE UNIVERSITY PRESS FEDI M., RAPOLLA, A. I METODI GRAVIMETRICO E MAGNETICO NELLA GEOFISICA DELLA TERRA SOLIDA, COLLANA GEOFISICA PER L’AMBIENTE ED IL TERRITORIO LIGUORI, NAPOLIFEDI M., RAPOLLA, A. LE INDAGINI GEOFISICHE PER LO STUDIO DEL SOTTOSUOLO METODI GEOELETTRICI E SISMICI, COLLANA GEOFISICA PER L’AMBIENTE ED IL TERRITORIO LIGUORI, NAPOLIMUSSETT, ALAN E., AFTAB KHAN, M. ESPLORAZIONE DEL SOTTOSUOLO. UNA INTRODUZIONE ALLA GEOFISICA APPLICATA ZANICHELLI
|
6 | GEO/11 | 48 | - | - | - | Related or supplementary learning activities | ITA | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Course | Credits | Scientific Disciplinary Sector Code | Contact Hours | Exercise Hours | Laboratory Hours | Personal Study Hours | Type of Activity | Language | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20402177 -
STRATIGRAPHIC GEOLOGY
(objectives)
TO PROVIDE TO THE STUDENT THE KNOWLEDGE OF THE MAIN TOOLS OF THE STRATIGRAPHIC GEOLOGY IN ORDER TO REACH AUTONOMY AND CRITICISM CAPABILITY IN FACING THOSE TOPICS OF THE GEOLOGY THAT NEED A STRATIGRAPHIC APPROACH. APPLICATION ON THE FIELD OF THE CONCEPTS.
-
CIPOLLARI PAOLA
(syllabus)
THE COURSE IS MADE OF THREE MODULES. THE FIRST MODULE PROVIDES THE FUNDAMENTALS OF THE STRATIGRAPHIC NOMENCLATURE. THE MAIN FEATURES OF THE STRTIGRAPHIC UNITS ARE DESCRIBED AND THEIR USE IS GAINED DURING THE EXERCISES. THE SECOND MODULE PROVIDES THE PRINCIPLES OF THE SEQUENCE STRATIGRAPHY WITH APPLICATIONS TO DIFFERENT SEDIMENTARY ENVIRONMENTS AND TO SEISMIC STRATIGRAPHY. THIS MODULE ALSO PROVIDES THE PRINCIPLES OF CYCLOSTRATIGRAPHY AND ASTROCHRONOLOGY. THESE CONCEPTS ARE EXAMINED IN CASE STUDIES FROM LITERATURE. THE THIRD MODULE IS DEDICATED TO REGIONAL STRATIGRAPHY. STARTING FROM A PALAEOGEOGRAPHIC RECONSTRUCTION OF THE MESOZOIC TETHYAN AREA, AN IDEAL ROUTE TROUGH THE MAIN SEDIMENTARY DOMAINS IS FOLLOWED. IN PARTICULAR, THE MAIN BASIN SUCCESSIONS (LA SPEZIA, TOSCANA, UMBRIA-MARCHE, LAGONEGRO AND MOLISE, IMERESE-SICANO BASIN) ARE EXAMINED. SOME CASES OF PELAGIC CARBONATE PLATFORM AND THE TRANSITION PLATFORM/BASIN OF THE GARGANO SUCCESSION ARE STUDIED TOO. FINALLY, THE STRATIGRAPHY OF THE LATIUM-ABRUZZI AND DOLOMITES CARBONATE PLATFORMS IS INVESTIGATED.
(reference books)
INTERNATIONAL SUBCOMMISSION ON STRATIGRAPHIC CLASSIFICATION OF IUGS INTERNATIONAL COMMISSION ON STRATIGRAPHY
(1976) – INTERNATIONAL STRATIGRAPHIC GUIDE. SALVADOR A. (ED.) COE A.L., BOSENCE D.W.J., CHURCH K.D., FLINT S.S., HOWELL J.A., WILSON R.C. (2002) – THE SEDIMENTARY RECORD OF SEA-LEVEL CHANGE. COE A.L. (ED.). THE OPEN UNIVERSITY - CAMBRIDGE UNIVERSITY PRESS. EINSELE G., RICKEN W, SEILACHER A. (EDS.) (1991) – CYCLES AND EVENTS IN STRATIGRAPHY. SPRINGER-VERLAG. GRAHAM WEEDON, 2003. TIME SERIES ANALYSIS AND CYCLOSTRATIGRAPHY: EXAMINING STRATIGRAPHIC RECORDS OF ENVIRONMENTAL CYCLES. CAMBRIDGE UNIVERSITY PRESS. ARTICLES FROM LITERATURE |
9 | GEO/02 | 56 | - | - | - | Core compulsory activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20402178 -
STRUCTURAL GEOLOGY
(objectives)
THE COURSE AIMS TO PROVIDE TOOLS AND METHODS FOR DESCRIPTION, ANALYSIS AND INTERPRETATION OF DUCTILE AND BRITTLE DEFORMATION PROCESSES AFFECTING A VOLUME OF ROCK. THE GOAL IS TO RECONSTRUCT COMPLEX DEFORMATION SEQUENCES FOR INTERPRETING THE REGIONAL GEOLOGICAL EVOLUTION. THE AIM OF THE COURSE IS ALSO TO PRESENT THE STRUCTURES AND STYLES ASSOCIATED WITH REGIONAL TECTONICS.
-
ROSSETTI FEDERICO
(syllabus)
DEFORMATION AND STRAIN; COAXIAL AND NON-COAXIAL DEFORMATION; FINITE AND INCREMENTAL DEFORMATION; HETEROGENEOUS AND HOMOGENEOUS STRAIN; THE ELLIPSOID OF STRAIN; STRAIN STATES AND QUANTIFICATION OF THE FINITE STRAIN. THE STRESS TENSOR AND THE PRINCIPAL AXES OF STRESS; MOHR'S CIRCLES. PRINCIPLES OF RHEOLOGY: DUCTILE AND BRITTLE DEFORMATION; DEFORMATION MECHANISMS; CONSTITUTIVE LAWS AND STRESS-STRAIN RELATIONSHIPS; NEWTONIAN AND NON-NEWTONIAN BEHAVIOUR; CREEP PROCESS IN GEOLOGY; RECOVERY AND RECRYSTALLISATION (STATIC AND DYNAMIC RECRYSTALLISATION PROCESSES); DEFORMATION MAPS FOR MATERIALS OF GEOLOGICAL INTEREST; RHEOLOGY OF THE OCEANIC AND CONTINENTAL LITHOSPHERE. DEFORMATION AND BRITTLE SHEARING: MOHR-COULOMB FAILURE CRITERION; THE GRIFFITH CRITERION. ANDERSONIAN FAULTS: DYNAMIC ANALYSIS AND CLASSIFICATION (STRESS INVERSION). JOINTS AND VEINS. STRUCTURE OF A FAULT ZONE: FAULT CORE AND DAMAGE ZONES; CLASSIFICATION OF FAULT ROCKS. GROWTH OF FAULTS AND THEIR SPATIAL ORGANIZATION; LATERAL PROPAGATION OF FAULTS, OVERLAP, LINKAGE AND ASSOCIATED FRACTURING; KINEMATIC INDICATORS ON FAULT SURFACES; RIEDEL SHEARS (SYNTHETIC AND ANTITHETIC). FAULTS AND EARTHQUAKES: THE TOOLS OF STRUCTURAL GEOLOGY: THE STUDY OF ACTIVE AND EXHUMED SEISMOGENIC FAULTS (PSEUDOTACHYLYTES). DUCTILE DEFORMATION: ROCK FABRICS, PLANO-LINEAR STRUCTURES (FOLIATION AND LINEATION), S; L; S-L TECTONITES AND THEIR TECTONICS SIGNIFICANCE. FOLDING AND ASSOCIATED STRUCTURES (TYPES AND CLASSIFICATION; INTERFERENCE AND OVERPRINTING CRITERIA). DEFORMATION AND METAMORPHISM: BLASTESIS-DEFORMATION RELATIONSHIPS (MESO-AND MICRO-SCALE); DUCTILE SHEAR ZONES (MYLONITES) AND THEIR GEOLOGICAL SIGNIFICANCE, KINEMATIC CRITERIA (MESO-AND MICRO-SCALE). SHEAR ZONES AND FLUID CIRCULATION: FLUID-ROCK INTERACTION AND THE STRUCTURAL CONTROLS ON HYDROTHERMAL MINERALIZATION. STRUCTURES ASSOCIATION AT REGIONAL SCALE AND THE STYLES OF REGIONAL TECTONICS. EXTENSIONAL TECTONICS (RIFTING): GEOMETRY OF RIFTING; MODELS PURE- AND SIMPLE-SHEAR MODELS: REGIONAL EXAMPLES; RHEOLOGY OF THE LITHOSPHERE AND TYPES OF RIFTING; THE RIFT-DRIFT TRANSITION; RIFTING AND SEDIMENTATION: INTERACTIONS BETWEEN DEFORMATION, SEDIMENTATION AND EROSION. COMPRESSIONAL TECTONICS: "SUBDUCTION FACTORY" AND OROGENY; DYNAMICS OF OROGENIC SYSTEMS; SUBDUCTION OROGENS, COLLISION AND SUBDUCTION-ACCRETION OROGENS: STRUCTURAL STYLES, THERMO-BARIC REGIMES AND TECTONIC EVOLUTION; THE OROGENIC WEDGE AND ITS DYNAMICS (EVOLUTION AND STYLES OF THRUST-AND-FOLD BELTS). STRIKE-SLIP TECTONICS: STRUCTURAL CHARACTERISTICS AND ASSOCIATED STRUCTURES; STRIKE-SLIP AND TRANSFORM FAULTS; STRIKE-SLIP INTRAPLATE TECTONICS: REGIONAL EXAMPLES. STRUCTURAL GEOLOGY AND ITS APPLICATIONS: ORE DEPOSITS, GEOTHERMAL RESERVOIRS AND GEOTECHNICAL PROBLEMS (EXAMPLES).
(reference books)
DURING THE COURSE PRACTICAL EXERCISES WILL BE CARRIED OUT FOCUSED ON THE ANALYSIS AND INTERPRETATION OF STRUCTURAL DATA. AT THE END OF THE COURSE, A WEEK-LONG CAMP IS SCHEDULED AIMED TO FIX THE BASIC CONCEPTS THOUGH ANALYSIS OF GEOLOGICAL STRUCTURES IN THE FIELD . THE BASIC READINGS:
-G. DAVIS, S. REYNOLDS, "STRUCTURAL GEOLOGY OF ROCKS AND REGIONS", WILEY, 1996. -B. A. VAN DER PLUIJM, S. MARSHAK. W.W, "EARTH STRUCTURE" (2ND ED.), NORTON, 2004. -C. W. PASSCHIER, R. A. J. TROUW, "MICROTECTONICS” (2ND ED.), SPRINGER, 2006. COMPLEMENTARY READINGS: -N. PRICE, J. COSGROVE, "ANALYSIS OF GEOLOGICAL STRUCTURES", CAMBRIDGE UNIVERSITY PRESS, 1990. -R. TWISS, E. M: MOORES, "STRUCTURAL GEOLOGY" (2ND ED.), FREEMAN, 2007. -R. H. GROSHONG, "3-D STRUCTURAL GEOLOGY: A PRACTICAL GUIDE TO SURFACE AND SUBSURFACE MAP INTERPRETATION" (2ND ED.), SPRINGER, 2006. -J. SUPPE "PRINCIPLES OF STRUCTURAL GEOLOGY", PRENTICE-HALL, 1985. -W. BURBANK, R. S. ANDERSON "TECTONIC GEOMORPHOLOGY", BLACKWELL, 2005.
-
CIFELLI FRANCESCA
(syllabus)
ACTIVITY ON THE FIELD FOR A PERIOD OF SEVEN DAYS WEEKLY WITH THE PURPOSE OF FIXING THE BASIC CONCEPTS DISCUSSED OVER THE COURSE AND TO PRESENT IN DIFFERENT STYLES DEFORMATION CONTEXT OF REGIONAL TECTONICS.
(reference books)
VARIOUS MATERIAL PROVIDED BY THE TEACHER
|
9 | GEO/03 | 56 | - | - | - | Core compulsory activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20402387 -
FIELD GEOLOGY AND THEMATIC MAPS
(objectives)
TO PROVIDE PRINCIPAL METHODS FOR THE GEOLOGICAL SURVEY, MAINLY THROUGH FIELD WORK AND LAB ACTIVITIES.
TO DEVELOP THE 3D VISION OF THE ROCK BODIES AND GEOLOGICAL STRUCTURES, STARTING FROM THE OUTCROPS, THROUGH MULTIDISCIPLINARY ACTIVITIES BOTH IN THE FIELD AND IN LABS, ON GEOLOGICAL PROBLEMS WITH MEDIUM-HIGH DEGREE OF DIFFICULTY.
-
COSENTINO DOMENICO
(syllabus)
TO ADDRESS SOME BASIC NOTIONS RELATIVE TO THE GEOLOGICAL SURVEY AND MAPPING. THE GEOLOGICAL SURVEY AS A TOOL FOR RECONSTRUCTING 3D GEOLOGICAL AND PHYSICAL MODEL OF THE SUBSURFACE THROUGH THE INTEGRATION OF BOTH SURFACE AND SUBSURFACE GEOLOGICAL DATA, BOREHOLES INFORMATION AND PHYSICAL PROPERTIES OF BOTH ROCK AND INCOHERENT MATERIALS.
(reference books)
PHYSICAL PROPERTIES OF ROCKS AND INCOHERENT MATERIALS; SUBSURFACE GEOLOGY, CONSOLIDATED AND UNCONSOLIDATED PLIO-QUATERNARY COVERS OF THE MAIN REGIONS OF CENTRAL ITALY; GEOMETRICAL AND TECHNICAL CHARACTERIZATION OF THE MAIN DISCONTINUITIES AFFECTING ROCKS TO DEFINE THE QUALITY OF ROCK MASSES. THE GEOLOGICAL SURVEY FOR SEISMIC MICROZONATION PURPOSES. THE PRACTICAL ACTIVITIES OF THIS COURSE WILL BE DONE IN FIELD TRIPS LEADED IN DIFFERENT GEOLOGICAL SETTINGS FOR WORKING ON KEY AREAS OF THE CENTRAL APENNINES TO EXPERIENCE THE MAIN ACTIVITIES RELATED TO THE GEOLOGICAL SURVEY AND MAPPING: TO ANALYSE THE BEDROCK AND THE INCOHERENT QUATERNARY COVERS; TO CHARACTERIZE GEOMETRY AND TECHNICAL PROPERTIES OF ALL THE DISCONTINUITIES AFFECTING ROCK MASSES; TO COLLECT SURFACE AND SUBSURFACE DATA, PHYSICAL PROPERTIES OF ROCKS AND INCOHERENT PLIO-QUATERNARY COVERS FOR RECONSTRUCTING THE PHYSICAL AND GEOLOGICAL MODEL OF THE SUBSURFACE. EACH FIELD TRIP WILL BE PREPARED IN CLASSROOM, LOOKING AT BOTH THE MORPHOLOGICAL AND THE GEOLOGICAL SETTING OF THE AREA. SUBSEQUENTLY, ONE DAY OF FIELD TRIP ALLOW STUDENTS TO COLLECT GEOLOGICAL DATA FROM THE KEY AREA. LATER ON, DATA COLLECTED WILL BE ANALYSED AND PROCESSED IN THE LAB. LAB ACTIVITIES WILL BRING STUDENTS TO PROVIDE THE GEOLOGICAL MAP OF THE SURVEYED AREA, TOGETHER WITH SOME THEMATIC MAPS, INCLUDING MAP KEY AND GEOLOGICAL CROSS-SECTIONS. FOR EACH FIELD TRIP, STUDENTS WILL PROVIDE, ALSO, A REPORT ON THE MAIN RESULTS OF THE GEOLOGICAL SURVEY. THE PRACTICAL ACTIVITIES OF THIS COURSE WILL CONCLUDE IN A FIELD SCHOOL FINALIZED TO PRODUCE THEMATIC MAPS AND RECONSTRUCT THE GEOLOGICAL AND PHYSICAL MODEL OF THE AREA IN REGION OF MEDIUM-HIGH DEGREE OF DIFFICULTY. SCESI L., PAPINI M., GATTINONI P. – GEOLOGIA APPLICATA: IL RILEVAMENTO GEOLOGICO-TECNICO. VOL. 1, SECONDA EDIZIONE. CASA EDITRICE AMBROSIANA. CEAEDIZIONI, 2006.
CREMONINI G. - RILEVAMENTO GEOLOGICO. - ED. PITAGORA, BOLOGNA, 1985. GEOLOGICAL MAPS, TOPOGRAPHIC MAPS, AERO PHOTOS, AND ARTICLES ON THE GEOLOGY OF THE DIFFERENT AREAS THAT WILL BE OBJECT OF THE FIELD TRIPS, WILL BE PROVIDED BY THE PERSONNEL RESPONSIBLE FOR THE COURSE.
-
BALLATO PAOLO
(syllabus)
TO ADDRESS SOME BASIC NOTIONS RELATIVE TO THE GEOLOGICAL SURVEY AND MAPPING. THE GEOLOGICAL SURVEY AS A TOOL FOR RECONSTRUCTING 3D GEOLOGICAL AND PHYSICAL MODEL OF THE SUBSURFACE THROUGH THE INTEGRATION OF BOTH SURFACE AND SUBSURFACE GEOLOGICAL DATA, BOREHOLES INFORMATION AND PHYSICAL PROPERTIES OF BOTH ROCK AND INCOHERENT MATERIALS.
(reference books)
PHYSICAL PROPERTIES OF ROCKS AND INCOHERENT MATERIALS; SUBSURFACE GEOLOGY, CONSOLIDATED AND UNCONSOLIDATED PLIO-QUATERNARY COVERS OF THE MAIN REGIONS OF CENTRAL ITALY; GEOMETRICAL AND TECHNICAL CHARACTERIZATION OF THE MAIN DISCONTINUITIES AFFECTING ROCKS TO DEFINE THE QUALITY OF ROCK MASSES. THE GEOLOGICAL SURVEY FOR SEISMIC MICROZONATION PURPOSES. THE PRACTICAL ACTIVITIES OF THIS COURSE WILL BE DONE IN FIELD TRIPS LEADED IN DIFFERENT GEOLOGICAL SETTINGS FOR WORKING ON KEY AREAS OF THE CENTRAL APENNINES TO EXPERIENCE THE MAIN ACTIVITIES RELATED TO THE GEOLOGICAL SURVEY AND MAPPING: TO ANALYSE THE BEDROCK AND THE INCOHERENT QUATERNARY COVERS; TO CHARACTERIZE GEOMETRY AND TECHNICAL PROPERTIES OF ALL THE DISCONTINUITIES AFFECTING ROCK MASSES; TO COLLECT SURFACE AND SUBSURFACE DATA, PHYSICAL PROPERTIES OF ROCKS AND INCOHERENT PLIO-QUATERNARY COVERS FOR RECONSTRUCTING THE PHYSICAL AND GEOLOGICAL MODEL OF THE SUBSURFACE. EACH FIELD TRIP WILL BE PREPARED IN CLASSROOM, LOOKING AT BOTH THE MORPHOLOGICAL AND THE GEOLOGICAL SETTING OF THE AREA. SUBSEQUENTLY, ONE DAY OF FIELD TRIP ALLOW STUDENTS TO COLLECT GEOLOGICAL DATA FROM THE KEY AREA. LATER ON, DATA COLLECTED WILL BE ANALYSED AND PROCESSED IN THE LAB. LAB ACTIVITIES WILL BRING STUDENTS TO PROVIDE THE GEOLOGICAL MAP OF THE SURVEYED AREA, TOGETHER WITH SOME THEMATIC MAPS, INCLUDING MAP KEY AND GEOLOGICAL CROSS-SECTIONS. FOR EACH FIELD TRIP, STUDENTS WILL PROVIDE, ALSO, A REPORT ON THE MAIN RESULTS OF THE GEOLOGICAL SURVEY. THE PRACTICAL ACTIVITIES OF THIS COURSE WILL CONCLUDE IN A FIELD SCHOOL FINALIZED TO PRODUCE THEMATIC MAPS AND RECONSTRUCT THE GEOLOGICAL AND PHYSICAL MODEL OF THE AREA IN REGION OF MEDIUM-HIGH DEGREE OF DIFFICULTY. SCESI L., PAPINI M., GATTINONI P. – GEOLOGIA APPLICATA: IL RILEVAMENTO GEOLOGICO-TECNICO. VOL. 1, SECONDA EDIZIONE. CASA EDITRICE AMBROSIANA. CEAEDIZIONI, 2006.
CREMONINI G. - RILEVAMENTO GEOLOGICO. - ED. PITAGORA, BOLOGNA, 1985. GEOLOGICAL MAPS, TOPOGRAPHIC MAPS, AERO PHOTOS, AND ARTICLES ON THE GEOLOGY OF THE DIFFERENT AREAS THAT WILL BE OBJECT OF THE FIELD TRIPS, WILL BE PROVIDED BY THE PERSONNEL RESPONSIBLE FOR THE COURSE. |
9 | GEO/02 | 48 | - | - | - | Core compulsory activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20402384 -
VOLCANOLOGY AND GEOLOGY OF VOLCANIC AREAS
(objectives)
THE COURSE PROVIDES TO THE STUDENTS THE BASIC CONCEPTS USEFUL FOR UNDERSTAND THE ERUPTIVE PROCESSES AND THE DEPOSITIONAL MECHANISM OF THE EFFUSIVE AND EXPLOSIVE DEPOSITS, STARTING FROM THE ANALYSES, CHARACTERIZATION AND INTERPRETATION OF THE DEPOSITS . MAIN TOPIC OF THE COURSE IS TO JOINT THE FIELD OBSERVATION TO THE THEORETICAL CONCEPTS.
FOR THE COMPREHENSION OF THE ARGUMENTS DEALT DURING THE COURSE IT IS NECESSARY TO HAVE CONCEPTS OF SEDIMENTOLOGY, PETROGRAPHY AND GEOCHEMISTRY.
-
GIORDANO GUIDO
(syllabus)
INTRODUCTION (SHORT HISTORY OF THE STUDIES IN VOLCANOLOGY; TERMINOLOGY OF THE VOLCANIC PRODUCTS; FACIES ANALYSES OF VOLCANIC DEPOSITS; PYROCLASTIC AND VOLCANOCLASTIC ROCKS AS KEY- ELEMENTS TO INTERPRET THE EXPLOSIVE AND POST ERUPTIVE PROCESSES IN THE RELATED ENVIRONMENTS).
(reference books)
CLASSIFICATION OF THE EFFUSIVE AND EXPLOSIVE DEPOSITS. COMPONENTS, TEXTURES AND STRUCTURES OF VOLCANIC AND VOLCANICLASTIC DEPOSITS. CLASSIFICATION OF PYROCLASTIC AND VOLCANOCLASTIC DEPOSITS. DEPOSITIONAL AND EROSIVE PROCESSES IN VOLCANIC AREAS. MORPHOLOGY OF VOLCANOES: MONOGENETIC AND POLYGENETIC VOLCANOES. THE PROCESS OF MAGMA RISING: THE EFFUSIVE PROCESS (LAVA FLOWS IN SUBAERIAL AND SUBACQUEOUS ENVIRONMENTS). MAGMA ESSOLUTION AND FRAGMENTATION (THE EXPLOSIVE ERUPTIONS, STYLES OF MAGMA FRAGMENTATION , RELATED MICRO-TEXTURE). TRANSPORT AND EMPLACEMENT MECHANISM OF THE EFFUSIVE AND EXPLOSIVE PRODUCTS AND RELATED DEPOSITS IN SUBAERIAL AND SUBACQUEOUS ENVIRONMENTS. BALLISTIC PATHWAYS OF LARGE CLASTS . MAIN CHARACTERISTICS OF THE ERUPTIONS AND CLASSIFICATION OF THE ERUPTIVE STYLES. MAIN CONCEPTS OF VOLCANIC HAZARD AND RISK. FROM MAGMA TO TEPHRA: MODELING PHYSICAL PROCESSES OF EXPLOSIVE VOLCANIC ERUPTIONS. EDITED BY ARMIN FREUNDT AND MAURO ROSI, 2000. ELSEVIER.
VOLCANIC SUCCESSIONS. CAS R.A.F. & WRIGHT J.V., 1987. ALLEN & UNWIN PYROCLASTIC ROCKS R.V. FISHER AND H.-U. SCHMINCKE, 1984. SPRINGER. ENCICLOPEDIA OF VOLCANOES. EDITED BY HARALDUR SIGURDSSON, BRUCE HOUGHTON, HAZEL RYMER, JOHN STIX, STEVE MCNUTT, 2000. ACADEMIC PRESS. FUNDAMENTALS OF PHYSICAL VOLCANOLOGY. E.A. PARFITT, L. WILSON 2008. BLACKWELL, OXFORD, PAPERBACK, 256 PAGES, ISBN: 978-0-632-05443-5 ORARIO DI RICEVIMENTO LUNEDì ORE 11-12
-
VONA ALESSANDRO
(syllabus)
INTRODUCTION (SHORT HISTORY OF THE STUDIES IN VOLCANOLOGY; TERMINOLOGY OF THE VOLCANIC PRODUCTS; FACIES ANALYSES OF VOLCANIC DEPOSITS; PYROCLASTIC AND VOLCANOCLASTIC ROCKS AS KEY- ELEMENTS TO INTERPRET THE EXPLOSIVE AND POST ERUPTIVE PROCESSES IN THE RELATED ENVIRONMENTS).
(reference books)
CLASSIFICATION OF THE EFFUSIVE AND EXPLOSIVE DEPOSITS. COMPONENTS, TEXTURES AND STRUCTURES OF VOLCANIC AND VOLCANICLASTIC DEPOSITS. CLASSIFICATION OF PYROCLASTIC AND VOLCANOCLASTIC DEPOSITS. DEPOSITIONAL AND EROSIVE PROCESSES IN VOLCANIC AREAS. MORPHOLOGY OF VOLCANOES: MONOGENETIC AND POLYGENETIC VOLCANOES. THE PROCESS OF MAGMA RISING: THE EFFUSIVE PROCESS (LAVA FLOWS IN SUBAERIAL AND SUBAQUEOUS ENVIRONMENTS). MAGMA EXSOLUTION AND FRAGMENTATION (THE EXPLOSIVE ERUPTIONS, STYLES OF MAGMA FRAGMENTATION, RELATED MICRO-TEXTURE). TRANSPORT AND EMPLACEMENT MECHANISM OF THE EFFUSIVE AND EXPLOSIVE PRODUCTS AND RELATED DEPOSITS IN SUBAERIAL AND SUBAQUEOUS ENVIRONMENTS. BALLISTIC PATHWAYS OF LARGE CLASTS. MAIN CHARACTERISTICS OF THE ERUPTIONS AND CLASSIFICATION OF THE ERUPTIVE STYLES. MAIN CONCEPTS OF VOLCANIC HAZARD AND RISK. FROM MAGMA TO TEPHRA: MODELING PHYSICAL PROCESSES OF EXPLOSIVE VOLCANIC ERUPTIONS. EDITED BY ARMIN FREUNDT AND MAURO ROSI, 2000. ELSEVIER.
VOLCANIC SUCCESSIONS. CAS R.A.F. & WRIGHT J.V., 1987. ALLEN & UNWIN PYROCLASTIC ROCKS R.V. FISHER AND H.-U. SCHMINCKE, 1984. SPRINGER. ENCYCLOPEDIA OF VOLCANOES. EDITED BY HARALDUR SIGURDSSON, BRUCE HOUGHTON, HAZEL RYMER, JOHN STIX, STEVE MCNUTT, 2000. ACADEMIC PRESS. FUNDAMENTALS OF PHYSICAL VOLCANOLOGY. E.A. PARFITT, L. WILSON 2008. BLACKWELL, OXFORD, PAPERBACK, 256 PAGES, ISBN: 978-0-632-05443-5 |
9 | GEO/08 | 56 | - | - | - | Core compulsory activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Course | Credits | Scientific Disciplinary Sector Code | Contact Hours | Exercise Hours | Laboratory Hours | Personal Study Hours | Type of Activity | Language | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20402400 -
EXPERIMENTAL TECTONICS
(objectives)
The goal of this course in to introduce the students to the basics of experimental modelling of tectonic processes. Experimental modelling is based on the use on analogue materials which can respect similarity principles in reproducing natural processes at smaller/faster spatial/temporal scales. The Laboratory of Experimental Tectonics was the first one developed in Italy, inspired by the long term international tradition of analogue modelling. In this class, we will use continuum mechanics, which describes the response of a material to an imposed force, to study and understand cause-effect relationships between geometry, kinematics and dynamics of the solid earth. Introductory lectures provide the theoretical background on rheology and scaling and will be followed by hands on exercises during which the students will learn how to address scientific questions through building experimental models. Each argument will be presented offering an initial basic theoretical background which will be subsequently implemented by the widest range of updated interpretations and natural examples. Students will be expected to actively participate to the class activities (e.g. reading scientific papers, homework assignments, set-up of analogue models, in-class presentations),
-
FACCENNA CLAUDIO
(syllabus)
The following topics will be addressed: a) Introduction on experimental modelling: what is an experimental models; history of experimental modeling; overview on the activity realized in worldwide Laboratories of Experimental Tectonics. b) Analogue materials and material properties (this session includes the measurements of material properties); c) Scaling; d) Overview on image analysis techniques; e) Building crustal-scale brittle models for the study of convergent, estensional and transcurrent systems. f) Building mantle-scale viscous models for the study of the subduction process; g) Building visco-elastic models for the study of subduction earthquakes.
(reference books)
All the realized models will be analyzed and modeling results interpreted. Moreover, it will be highlighted potential applications to natural examples. - Geodynamics: Second Edition, Turcotte, D. L. and Schubert, G., John Wiley & Sons, New York, 2002.
- Mantle Dynamics: Mantle Convection in the Earth and Planets, Schubert, G., Turcotte, D. L. and P. Olson, Cambridge University Press, 2001 - Dynamic Earth, Plates, Plumes and Mantle Convection, Davies, G.F., Cambridge University Press, 1999. - Treatise on Geophysics, volumi 1, 3, 6, 7, 9 Ed. Schubert G., Elsevier 2007 - Bibliography given by the instructors during the classes. All the reference sources are available at library BAST Roma Tre University.
-
FUNICIELLO FRANCESCA
(syllabus)
The following topics will be addressed: a) Introduction on experimental modelling: what is an experimental models; history of experimental modeling; overview on the activity realized in worldwide Laboratories of Experimental Tectonics. b) Analogue materials and material properties (this session includes the measurements of material properties); c) Scaling; d) Overview on image analysis techniques; e) Building crustal-scale brittle models for the study of convergent, estensional and transcurrent systems. f) Building mantle-scale viscous models for the study of the subduction process; g) Building visco-elastic models for the study of subduction earthquakes.
(reference books)
All the realized models will be analyzed and modeling results interpreted. Moreover, it will be highlighted potential applications to natural examples. - Geodynamics: Second Edition, Turcotte, D. L. and Schubert, G., John Wiley & Sons, New York, 2002.
- Mantle Dynamics: Mantle Convection in the Earth and Planets, Schubert, G., Turcotte, D. L. and P. Olson, Cambridge University Press, 2001 - Dynamic Earth, Plates, Plumes and Mantle Convection, Davies, G.F., Cambridge University Press, 1999. - Treatise on Geophysics, volumi 1, 3, 6, 7, 9 Ed. Schubert G., Elsevier 2007 - Bibliography given by the instructors during the classes. All the reference sources are available at library BAST of Roma Tre University. |
6 | GEO/03 | 48 | - | - | - | Core compulsory activities | ENG | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20402401 -
GEODYNAMICS
(objectives)
THE AIM OF THIS COURSE IS TO PROVIDE THE BASIS ON THE DYNAMICS (I.E. FORCES) CONTROLLING THE EVOLUTION OF THE EARTH. IN THIS CLASS, WE WILL INTRODUCE AND USE CONTINUUM MECHANICS TO STUDY AND UNDERSTAND CAUSE-EFFECT RELATIONSHIPS BETWEEN GEOMETRY, KINEMATICS AND DYNAMICS OF THE SOLID EARTH (WITH REFERENCES TO PLANETOLOGY), TO ALLOW THE STUDENTS TO IDENTIFY AND QUANTITATIVELY ANALYZE THE RELATIONS BETWEEN CAUSES (I.E. FORCES AND STRESSES) AND EFFECTS (TECTONICS). THE SUBJECTS INCLUDE THE ROLE PLAYED BY VOLUME (E.G. GRAVITY) AND SURFACE FORCES (E.G. PLATE TECTONICS, CRUSTAL STRESSES) AND THEIR INTERACTIONS WITH THE MATERIALS AND STRUCTURES OF THE EARTH CRUST/LITHOSPHERE.
SUBJECTS WILL BE PRESENTED FROM THE BASIC THEORETICAL BACKGROUND UP TO THEIR APPLICATIONS, INCLUDING THE RESEARCH AND DEVELOPMENT OF MINERAL AND ENERGY RESOURCES, WITHIN THE COMPLEX SYSTEM THAT CONSTITUTES THE LITHOSPHERE WITH PRACTICAL EXAMPLES AND INCLUDING THE PREPARATION BY STUDENTS OF A QUANTITATIVE GEODYNAMIC MODEL IN A SELECTED SECTOR OF THE LITHOSPHERE, ALSO BY SIMPLE NUMERICAL METHODOLOGY.
-
FUNICIELLO FRANCESCA
(syllabus)
- Introduction
(reference books)
- Foundation (surface, interior, Matlab) - Mass conservation - Energetics (Heat and T) - Mechanics: Force and Rheology (Stress and strain, Elasticity-Viscosity-Plasticity, Rheology of the lithosphere, Rheology of the mantle, Forces applied to lithospheric plates) - Force balance - Fluid dynamics - Gravity - Faulting - Applications to different tectonic environments - GEODYNAMICS: SECOND EDITION, TURCOTTE, D. L. AND SCHUBERT, G., JOHN WILEY & SONS, NEW YORK, 2002 (AVAILABLE AT BAST).
REFERENCES PROVIDED DURING THE CLASS |
6 | GEO/03 | 48 | - | - | - | Core compulsory activities | ENG | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20402402 -
VOLCANO-TECTONICS
(objectives)
PROVIDE BASIC PRINCIPLES ON DEFORMATIONS IN VOLCANIC AREAS AND THE STRUCTURE OF VOLCANOES
-
ACOCELLA VALERIO
(syllabus)
VOLCANISM AND PLATE-TECTONICS; MAGMA-TRIGGERING AND MAGMA-INDUCED STRUCTURES.
(reference books)
- DEFORMATIONS INDUCED BY MAGMATIC ACTIVITY: RISE OF MAGMA THROUGH DIAPIRS; PROPAGATION AND EMPLACEMENT OF DIKES; FORMATION OF SILLS, LACCOLITHS AND MAGMA CHAMBERS; VERTICAL MOVEMENTS IN VOLCANIC AREAS (CALDERAS, RESURGENCES, BRADYSEISMS); SECTOR COLLAPSES OF VOLCANIC EDIFICES; MONITORING OF VOLCANIC AREAS: ANALYSIS OF DEFORMATION AND SOURCES. - REGIONAL CONTROL OF EXTENSIONAL, STRIKE-SLIP AND COMPRESSIVE TECTONICS ON VOLCANISM: CONTINENTAL, TRANSITIONAL AND OCEANIC RIFTS, OBLIQUELY AND ORTHOGONALLY CONVERGENT MARGINS, BACK-ARC BASINS; EARTHQUAKE-VOLCANO INTERACTIONS; HOT SPOTS. - VOLCANO-TECTONICS AND ERUPTIONS: HAZARD MITIGATION AND APPLICATIONS TO ITALIAN VOLCANOES. - VOLCANO-TECTONICS AND GEOTHERMAL ENERGY. VARIOUS MATERIAL PROVIDED BY THE TEACHER
|
6 | GEO/03 | 48 | - | - | - | Core compulsory activities | ENG | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Course | Credits | Scientific Disciplinary Sector Code | Contact Hours | Exercise Hours | Laboratory Hours | Personal Study Hours | Type of Activity | Language | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20402399 -
EXPERIMENTAL VOLCANOLOGY
(objectives)
The objective of the course is to provide a comprehensive knowledge of the physical and chemical processes governing the volcanic activity. Training on analytical and experimental methods and techniques for the study of magma properties and of eruption dynamics will be given.
-
ROMANO CLAUDIA
(syllabus)
Structure of silicate melts. Effect of temperature pressure and composition of the structural configuration of silicate melts. Glass transition temperature and relaxation times.
(reference books)
Chemical and physical properties of magma: density, viscosity, volatile solubility, diffusivity, compressibility and electrical conductivities of magmas. Termodynamic properties of magmas: enthalpy, entropy and heat capacity. Effect of chemical composition, temperature and pressure on the density and viscosity of magmas. The influence of degassing crystallization and deformation regime on the rheological properties of magmas. Control of the physical and chemical properties on the ascent of magma and on the eruptive style of volcanoes. Magma ascent: Nucleation and growth of bubbles. Crystallization processes. Fragmentation criteria and magma explosivity. Evolution of physical parameters of magma and flow dynamics during magma ascent Lava flows: Types of lava flows and rheological control of lava flow geometry. Lava flow motion and effects of ground slope. Explosive eruptions: Influence of physical parameters on eruptive styles. Steady explosive eruptions: eruption plumes formation. Fallout of clasts from eruption plumes and unstable eruption columns. Formation of piroclastic density currents. The course will include laboratory activities for the experimental determination of physical-chemical properties of magmas (high temperature experiments and spectroscopic measurements) and numerical exercises aimed at the quantitative determination of the textural parameters of iuvenile products (cristallinity, vesicularity, crystal and bubble size distribution) and at the numerical simulation of the conduit and eruptive dynamics. FUNDAMENTAL OF PHYSICAL VOLCANOLOGY. ELISABETH A. PARFITT AND LIONEL WILSON. BLACKWELL PUBLISHING
Material furnished by the Professor
-
VONA ALESSANDRO
(syllabus)
Structure of silicate melts. Effect of temperature pressure and composition of the structural configuration of silicate melts. Glass transition temperature and relaxation times.
(reference books)
Chemical and physical properties of magma: density, viscosity, volatile solubility, diffusivity, compressibility and electrical conductivities of magmas. Thermodynamic properties of magmas: enthalpy, entropy and heat capacity. Effect of chemical composition, temperature and pressure on the density and viscosity of magmas. The influence of degassing crystallization and deformation regime on the rheological properties of magmas. Control of the physical and chemical properties on the ascent of magma and on the eruptive style of volcanoes. Magma ascent: Nucleation and growth of bubbles. Crystallization processes. Fragmentation criteria and magma explosivity. Evolution of physical parameters of magma and flow dynamics during magma ascent Lava flows: Types of lava flows and rheological control of lava flow geometry. Lava flow motion and effects of ground slope. Explosive eruptions: Influence of physical parameters on eruptive styles. Steady explosive eruptions: eruption plumes formation. Fallout of clasts from eruption plumes and unstable eruption columns. Formation of pyroclastic density currents. The course will include laboratory activities for the experimental determination of physical-chemical properties of magmas (high temperature experiments and spectroscopic measurements) and numerical exercises aimed at the quantitative determination of the textural parameters of juvenile products (crystallinity, vesicularity, crystal and bubble size distribution) and at the numerical simulation of the conduit and eruptive dynamics. FUNDAMENTAL OF PHYSICAL VOLCANOLOGY. ELISABETH A. PARFITT AND LIONEL WILSON. BLACKWELL PUBLISHING
Material furnished by the Professor |
6 | GEO/08 | 48 | - | - | - | Related or supplementary learning activities | ITA | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20402403 -
REGIONAL GEOLOGY
(objectives)
TO PROVIDE BASIC INSTRUMENTS AND METHODS TO PERFORM REGIONAL GEOLOGICAL ANALYSES; TO GIVE BASIC INSTRUMENTS FOR READING, INTERPRETING, AND UTILIZING REGIONAL GEOLOGICAL MAPS; TO GIVE KNOWLEDGE OF THE GEOLOGICAL SETTING OF THE CIRCUM-MEDITERRANEAN AREA.
-
MATTEI MASSIMO
(syllabus)
1) TECTONIC STRUCTURE GENERAL AREA CIRCUM - MEDITERRANEAN. PALEOGEOGRAPHIC RECONSTRUCTIONS AND MAIN EVENTS GEODYNAMIC. GEOLOGICAL AND GEOPHYSICAL METHODS FOR PALEOGEOGRAPHIC RECONSTRUCTIONS. 2) THE CALEDONIAN AND HERCYNIAN OROGENESIS IN EUROPE; THE CIMMERIAN OROGENESIS. 3) THE PALEOGEOGRAPHICAL EVOLUTION OF THE PALEOTETHYAN AND NEOTETHYAN OCEANS. THE AFRICA-EUROPE KUNEMATICS AND THE OPENING OF THE ATLANTIC OCEAN; THE ALPS; THE REGIONAL NAPPE STRUCTURE OF THE ALPS; METAMORPHIC FACIES DISTRIBUTION IN THE ALPINE CHAIN; AGE OF THE SILICICLASTIC FLYSCH DEPOSITS OF THE ALPS. THE WESTERN ALPS: STRUCTURAL SETTING AND CHRONOLOGY OF THE DEFORMATION. THE ALPINE CHAIN: SUBSURFACE DATA FROM SEISMIC REFLECTION PROFILES CROP-ECORS, NFP20. 4) THE CIRCUM-MEDITERRANEAN REGION: EVOLUTION OF THE METAMORPHIC CORES AND OF THE CHAIN-FOREDEEP SYSTEMS; BACK-ARC BASINS; PRESENT-DAY KINEMATICS.
(reference books)
- AA.VV. – ARTICOLI SCIENTIFICI PUBBLICATI SU RIVISTE NAZIONALI E INTERNAZIONALI, CONSIGLIATI DAL DOCENTE DURANTE IL CORSO.
- AA.VV.- CARTOGRAFIA GEOLOGICA REGIONALE A VARIE SCALE. - AA.VV. GUIDE GEOLOGICHE REGIONALI, A CURA DELLA SOCIETÀ GEOLOGICA ITALIANA. BE-MA EDITRICE MILANO. - BALLY A.W., CATALANO R. & OLDOW J. – ELEMENTI DI TETTONICA REGIONALE. PITAGORA EDITRICE BOLOGNA. - BIGI G., COSENTINO D., PAROTTO M., SARTORI R. & SCANDONE P. (COORDS) – STRUCTURAL MODEL OF ITALY. SHEETS 1, 2, 3, 4, 5, AND 6. SCALE 1:500,000. QUADERNI DE “LA RICERCA SCIENTIFICA”, 114, VOL. 3. CNR. - BIGI G., CASTELLARIN A., CATALANO R., COLI M., COSENTINO D., DAL PIAZ G.V., LENTINI F., PAROTTO M., PATACCA E., PRATURLON A., SALVINI F., SARTORI R., SCANDONE P. & VAI G.B. – SYNTHETIC STRUCTURAL-KINEMATIC MAP OF ITALY. SCALE 1:500,000. QUADERNI DE “LA RICERCA SCIENTIFICA”, 114, VOL. 3. CNR. - GASPERI G. – GEOLOGIA REGIONALE. PITAGORA EDITRICE BOLOGNA.
-
CIFELLI FRANCESCA
(syllabus)
1) TECTONIC STRUCTURE GENERAL AREA CIRCUM - MEDITERRANEAN. PALEOGEOGRAPHIC RECONSTRUCTIONS AND MAIN EVENTS GEODYNAMIC. GEOLOGICAL AND GEOPHYSICAL METHODS FOR PALEOGEOGRAPHIC RECONSTRUCTIONS. 2) THE CALEDONIAN AND HERCYNIAN OROGENESIS IN EUROPE; THE CIMMERIAN OROGENESIS. 3) THE PALEOGEOGRAPHICAL EVOLUTION OF THE PALEOTETHYAN AND NEOTETHYAN OCEANS. THE AFRICA-EUROPE KUNEMATICS AND THE OPENING OF THE ATLANTIC OCEAN; THE ALPS; THE REGIONAL NAPPE STRUCTURE OF THE ALPS; METAMORPHIC FACIES DISTRIBUTION IN THE ALPINE CHAIN; AGE OF THE SILICICLASTIC FLYSCH DEPOSITS OF THE ALPS. THE WESTERN ALPS: STRUCTURAL SETTING AND CHRONOLOGY OF THE DEFORMATION. THE ALPINE CHAIN: SUBSURFACE DATA FROM SEISMIC REFLECTION PROFILES CROP-ECORS, NFP20. 4) THE CIRCUM-MEDITERRANEAN REGION: EVOLUTION OF THE METAMORPHIC CORES AND OF THE CHAIN-FOREDEEP SYSTEMS; BACK-ARC BASINS; PRESENT-DAY KINEMATICS.
(reference books)
- AA.VV. – SCIENTIFIC PAPERS PUBLISHED ON NATIONAL AND INTERNATIONAL JOURNALS, SUGGESTED BY THE TEACHER DURING THE LECTURES.
- AA.VV.- REGIONAL GEOLOGICAL MAPS AT DIFFERENT SCALES. - AA.VV. GUIDE GEOLOGICHE REGIONALI, EDITE DALLA SOCIETA’ GEOLOGICA ITALIANA. BE-MA EDITRICE MILANO. - BALLY A.W., CATALANO R. & OLDOW J. – ELEMENTI DI TETTONICA REGIONALE. PITAGORA EDITRICE BOLOGNA. - BIGI G., COSENTINO D., PAROTTO M., SARTORI R. & SCANDONE P. (COORDS) – STRUCTURAL MODEL OF ITALY. SHEETS 1, 2, 3, 4, 5, AND 6. SCALE 1:500,000. QUADERNI DE “LA RICERCA SCIENTIFICA”, 114, VOL. 3. CNR. - BIGI G., CASTELLARIN A., CATALANO R., COLI M., COSENTINO D., DAL PIAZ G.V., LENTINI F., PAROTTO M., PATACCA E., PRATURLON A., SALVINI F., SARTORI R., SCANDONE P. & VAI G.B. – SYNTHETIC STRUCTURAL-KINEMATIC MAP OF ITALY. SCALE 1:500,000. QUADERNI DE “LA RICERCA SCIENTIFICA”, 114, VOL. 3. CNR. - GASPERI G. – GEOLOGIA REGIONALE. PITAGORA EDITRICE BOLOGNA. |
6 | GEO/03 | 48 | - | - | - | Core compulsory activities | ENG | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20410063 -
CAMPO DI FINE BIENNIO
(objectives)
PRACTICAL GEOLOGICAL EXPERIENCES, WITH THE AIM OF LEARNING A GLOBAL APPROACHING TO THE APPLICATIONS OF GEOLOGY (GEOLOGICAL FRAMEWORK, URBANIZATION, LANDSLIDE, WATER RESOURCES, NONRENEWABLE RESOURCES, ENVIRONMENTAL REQUALIFICATIONS, ECT.). CONTACTS WITH PROFESSIONAL GEOLOGY CONTEXT IN SOLVING REAL PROBLEMS.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20410063-1 -
CAMPO DI FINE BIENNIO - I MODULO
(objectives)
PRACTICAL GEOLOGICAL EXPERIENCES, WITH THE AIM OF LEARNING A GLOBAL APPROACHING TO THE APPLICATIONS OF GEOLOGY (GEOLOGICAL FRAMEWORK, URBANIZATION, LANDSLIDE, WATER RESOURCES, NONRENEWABLE RESOURCES, ENVIRONMENTAL REQUALIFICATIONS, ECT.). CONTACTS WITH PROFESSIONAL GEOLOGY CONTEXT IN SOLVING REAL PROBLEMS.
-
MAZZA ROBERTO
(syllabus)
A COMPARISON OF VARIOUS GEOLOGICAL SITUATIONS IS PROPOSED TO STUDENTS WITH THE GOAL TO STIMULATE FROM THEIR SIDE THE SOLUTIONS BY APPLICATIONS WHICH AIM AT DEFINING, IN TERMS OF GEOLOGICAL, ISSUES FOR PROJECT WORKS AND MITIGATION OF GEOLOGICAL RISK MANAGEMENT.
(reference books)
THIS LEARNING FIELDWORK IS INTEGRATED BY MEETINGS WITH LOCAL PROFESSIONAL FIRMS AND THE REPRESENTATIVES OF LAND MANAGEMENT AGENCIES. THE LEARNING ACTIVITIES INCLUDE SEMINARS ON RELATED TOPICS. THE EVALUATION ACTS BY A POWER POINT REPORT DONE FROM A RESTRICTED GROUP OF STUDENTS. VARIOUS MATERIAL PROVIDED BY THE TEACHER
-
DELLA MONICA GIUSEPPE
(syllabus)
A COMPARISON OF VARIOUS GEOLOGICAL SITUATIONS IS PROPOSED TO STUDENTS WITH THE GOAL TO STIMULATE FROM THEIR SIDE THE SOLUTIONS BY APPLICATIONS WHICH AIM AT DEFINING, IN TERMS OF GEOLOGICAL, ISSUES FOR PROJECT WORKS AND MITIGATION OF GEOLOGICAL RISK MANAGEMENT.
(reference books)
THIS LEARNING FIELDWORK IS INTEGRATED BY MEETINGS WITH LOCAL PROFESSIONAL FIRMS AND THE REPRESENTATIVES OF LAND MANAGEMENT AGENCIES. THE LEARNING ACTIVITIES INCLUDE SEMINARS ON RELATED TOPICS. THE EVALUATION ACTS BY A POWER POINT REPORT DONE FROM A RESTRICTED GROUP OF STUDENTS. VARIOUS MATERIAL PROVIDED BY THE TEACHER
|
1 | GEO/05 | - | - | - | - | Other activities | ITA | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20410063-2 -
CAMPO DI FINE BIENNIO - II MODULO
(objectives)
PRACTICAL GEOLOGICAL EXPERIENCES, WITH THE AIM OF LEARNING A GLOBAL APPROACHING TO THE APPLICATIONS OF GEOLOGY (GEOLOGICAL FRAMEWORK, URBANIZATION, LANDSLIDE, WATER RESOURCES, NONRENEWABLE RESOURCES, ENVIRONMENTAL REQUALIFICATIONS, ECT.). CONTACTS WITH PROFESSIONAL GEOLOGY CONTEXT IN SOLVING REAL PROBLEMS.
-
MOLIN PAOLA
(syllabus)
A COMPARISON OF VARIOUS GEOLOGICAL SITUATIONS IS PROPOSED TO STUDENTS WITH THE GOAL TO STIMULATE FROM THEIR SIDE THE SOLUTIONS BY APPLICATIONS WHICH AIM AT DEFINING, IN TERMS OF GEOLOGICAL, ISSUES FOR PROJECT WORKS AND MITIGATION OF GEOLOGICAL RISK MANAGEMENT.
(reference books)
THIS LEARNING FIELDWORK IS INTEGRATED BY MEETINGS WITH LOCAL PROFESSIONAL FIRMS AND THE REPRESENTATIVES OF LAND MANAGEMENT AGENCIES. THE LEARNING ACTIVITIES INCLUDE SEMINARS ON RELATED TOPICS. THE EVALUATION ACTS BY A POWER POINT REPORT DONE FROM A RESTRICTED GROUP OF STUDENTS. hand-outs provided by the professor
-
BELLATRECCIA FABIO
(syllabus)
A COMPARISON OF VARIOUS GEOLOGICAL SITUATIONS IS PROPOSED TO STUDENTS WITH THE GOAL TO STIMULATE FROM THEIR SIDE THE SOLUTIONS BY APPLICATIONS WHICH AIM AT DEFINING, IN TERMS OF GEOLOGICAL, ISSUES FOR PROJECT WORKS AND MITIGATION OF GEOLOGICAL RISK MANAGEMENT.
(reference books)
THIS LEARNING FIELDWORK IS INTEGRATED BY MEETINGS WITH LOCAL PROFESSIONAL FIRMS AND THE REPRESENTATIVES OF LAND MANAGEMENT AGENCIES. THE LEARNING ACTIVITIES INCLUDE SEMINARS ON RELATED TOPICS. THE EVALUATION ACTS BY A POWER POINT REPORT DONE FROM A RESTRICTED GROUP OF STUDENTS. VARIOUS MATERIAL PROVIDED BY THE TEACHER
-
MAZZA ROBERTO
(syllabus)
A COMPARISON OF VARIOUS GEOLOGICAL SITUATIONS IS PROPOSED TO STUDENTS WITH THE GOAL TO STIMULATE FROM THEIR SIDE THE SOLUTIONS BY APPLICATIONS WHICH AIM AT DEFINING, IN TERMS OF GEOLOGICAL, ISSUES FOR PROJECT WORKS AND MITIGATION OF GEOLOGICAL RISK MANAGEMENT.
(reference books)
THIS LEARNING FIELDWORK IS INTEGRATED BY MEETINGS WITH LOCAL PROFESSIONAL FIRMS AND THE REPRESENTATIVES OF LAND MANAGEMENT AGENCIES. THE LEARNING ACTIVITIES INCLUDE SEMINARS ON RELATED TOPICS. THE EVALUATION ACTS BY A POWER POINT REPORT DONE FROM A RESTRICTED GROUP OF STUDENTS. VARIOUS MATERIAL PROVIDED BY THE TEACHER
|
1 | GEO/05 | - | - | - | - | Other activities | ITA | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20410063-3 -
CAMPO DI FINE BIENNIO - III MODULO
(objectives)
PRACTICAL GEOLOGICAL EXPERIENCES, WITH THE AIM OF LEARNING A GLOBAL APPROACHING TO THE APPLICATIONS OF GEOLOGY (GEOLOGICAL FRAMEWORK, URBANIZATION, LANDSLIDE, WATER RESOURCES, NONRENEWABLE RESOURCES, ENVIRONMENTAL REQUALIFICATIONS, ECT.). CONTACTS WITH PROFESSIONAL GEOLOGY CONTEXT IN SOLVING REAL PROBLEMS.
-
SALVINI FRANCESCO
(syllabus)
A COMPARISON OF VARIOUS GEOLOGICAL SITUATIONS IS PROPOSED TO STUDENTS WITH THE GOAL TO STIMULATE FROM THEIR SIDE THE SOLUTIONS BY APPLICATIONS WHICH AIM AT DEFINING, IN TERMS OF GEOLOGICAL, ISSUES FOR PROJECT WORKS AND MITIGATION OF GEOLOGICAL RISK MANAGEMENT.
(reference books)
THIS LEARNING FIELDWORK IS INTEGRATED BY MEETINGS WITH LOCAL PROFESSIONAL FIRMS AND THE REPRESENTATIVES OF LAND MANAGEMENT AGENCIES. THE LEARNING ACTIVITIES INCLUDE SEMINARS ON RELATED TOPICS. THE EVALUATION ACTS BY A POWER POINT REPORT DONE FROM A RESTRICTED GROUP OF STUDENTS. VARIOUS MATERIAL PROVIDED BY THE TEACHER
-
TUCCIMEI PAOLA
(syllabus)
A COMPARISON OF VARIOUS GEOLOGICAL SITUATIONS IS PROPOSED TO STUDENTS WITH THE GOAL TO STIMULATE FROM THEIR SIDE THE SOLUTIONS BY APPLICATIONS WHICH AIM AT DEFINING, IN TERMS OF GEOLOGICAL, ISSUES FOR PROJECT WORKS AND MITIGATION OF GEOLOGICAL RISK MANAGEMENT.
(reference books)
THIS LEARNING FIELDWORK IS INTEGRATED BY MEETINGS WITH LOCAL PROFESSIONAL FIRMS AND THE REPRESENTATIVES OF LAND MANAGEMENT AGENCIES. THE LEARNING ACTIVITIES INCLUDE SEMINARS ON RELATED TOPICS. THE EVALUATION ACTS BY A POWER POINT REPORT DONE FROM A RESTRICTED GROUP OF STUDENTS. My contribution deals with: Geochemical composition of main springs and its interpretation to reconstruct hydrogeological circuits Soil gas (radon) measurements: geochemical prospecting and environmental hazard VARIOUS MATERIAL PROVIDED BY THE TEACHER
-
MAZZA ROBERTO
(syllabus)
A COMPARISON OF VARIOUS GEOLOGICAL SITUATIONS IS PROPOSED TO STUDENTS WITH THE GOAL TO STIMULATE FROM THEIR SIDE THE SOLUTIONS BY APPLICATIONS WHICH AIM AT DEFINING, IN TERMS OF GEOLOGICAL, ISSUES FOR PROJECT WORKS AND MITIGATION OF GEOLOGICAL RISK MANAGEMENT.
(reference books)
THIS LEARNING FIELDWORK IS INTEGRATED BY MEETINGS WITH LOCAL PROFESSIONAL FIRMS AND THE REPRESENTATIVES OF LAND MANAGEMENT AGENCIES. THE LEARNING ACTIVITIES INCLUDE SEMINARS ON RELATED TOPICS. THE EVALUATION ACTS BY A POWER POINT REPORT DONE FROM A RESTRICTED GROUP OF STUDENTS. VARIOUS MATERIAL PROVIDED BY THE TEACHER
|
1 | GEO/05 | - | - | - | - | Other activities | ITA | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20402419 -
STAGE
|
3 | - | - | - | - | Per stages e tirocini presso imprese, enti pubblici o privati, ordini professionali (art.10, comma 5, lettera e) | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20410120 -
PROVA FINALE
|
21 | - | - | - | - | Final examination and foreign language test | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|