Course | Credits | Scientific Disciplinary Sector Code | Contact Hours | Exercise Hours | Laboratory Hours | Personal Study Hours | Type of Activity | Language | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20401904 -
THEORETICAL PHYSICS I
(objectives)
To study classical electrodynamics in detail, to provide the elements of relativistic quantum mechanics. Provide the basics of field theory and QED
-
DEGRASSI GIUSEPPE
(syllabus)
Special Relativity and Electromagnetism.
(reference books)
Lorentz transformations, Minkowski plane, Poincarè and Lorentz groups. Covariant and controvariant vectors, tensors, transformation law of the fields. Relativistic Dynamics: four-velocity, four-momentum, Minkowski force. Covariant formulation of Electromagnetism: transformation properties of the electric and magnetic fields, electromagnetic field tensor, covariant formulation of the Maxwell equations, four-potential, gauge invariance. Conservation laws: Maxwell stress tensor, energy-momentum tensor, conservation of energy, momentum and angular momentum. Solution of the Maxwell equations for the four-potential in the vacuum in the Lorentz gauge. Plane waves, radiation pressure. Lienard e Wiechert potentials. Radiated power. Thomson cross section. Compton effect. Cerenkov effect. Relativistic Quantum Mechanics Klein-Gordon equation. Dirac equation, non-relativistic limit. Covariance of the Dirac equation. Solutions of Dirac equation. Projectors for positive and negative energy solutions. Helicity. Chirality. Quantum Field Theory Quantization of the electromagnetic field in the radiation gauge. Creation and annihilation operators. Heisenberg representation. Lagrangian field theory, symmetry and conservation laws, Noether theorem. Field quantization. Lagrangian for a real and complex scalar field, quantization. Lagrangian for a Dirac field, quantization. Electromagnetic field, covariant quantization. Global and local invariance. Interaction picture. S-matrix and its expansion. Wick theorem. Commutators and propagators for bosonic and fermionic fields. Quantzation of the electromagnetic field. Feynman diagrams and rules in QED. Tree-level processes: e+e- - mu+ mu-, scattering by an external field. V. Barone: Relatività, Bollati Boringhieri.
F. Mandl, G. Shaw: Quantum Field Theory, John Wiley & Sons. |
8 | FIS/02 | 46 | 22 | - | - | Related or supplementary learning activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20402209 -
NUCLEAR AND SUBNUCLEAR PHYSICS
(objectives)
To show the basic concepts of elementary particles and the phenomenology of fundamental interactions.
-
DI MICCO BIAGIO
(syllabus)
Symmetries and conservation laws, continuous and discrete trasforms, parity, charge conjugation, time reversal. Relativistic quantum equations, Klein-Gordon equation, Dirac equation, negative Energy solutions, helicity, non-relativistic limit, the spin, anti-particles. Solutions for zero mass, properties of neutrinos.
(reference books)
Relativistic perturbation theory, quantum electrodynamics, Feynman diagrams, the propagator. Relativistic expression of Rutherford cross section, Mott, Dirac and Rosenbluth cross section. Cosmic rays, primary and secondary components, discovery of mesons. Properties of muon and pion, strange particles, isospin Multiplets. Elementary particles and fundamental interactions, leptons and hadrons, mesons and baryons, anti-particles. Hadronic interactions, isospin, the Yukawa model, pion-nucleon elastic scattering, the Delta resonance, baryonic and mesonic resonances, meson and baryon multiplets. Unitary symmetries, SU(2), SU(3), static quark model, u-d-s quarks, representation of baryons and mesons, magnetic moment of baryons, the colour of quarks. Weak interactions, nuclear beta decay, Fermi and Gamow-Teller transitions, parity non-conservation, beta decay of polarized Co60. Helicity of the neutrino, V-A interaction. Muon decay, the Fermi constant. Pion decay, production of neutrino beams, leptonic number conservation, the two neutrinos e/mu. Neutrino interactions, the weak interaction propagator. Particle decays in the quark model, weak decays of strange particles, the Cabibbo angle. K0 mesons, CP eigenstates, K0L and K0S mesons, the Glashow-Iliopoulos-Maiani hypothesis and the charm quark. CP-symmetry violation, the Cabibbo-Kobayashi-Maskawa miixing matrix and the beauty quark. Inelastic lepton-nucleon scattering, struccature functions, Bjorken scaling, the parton model, parton densities, Inelastic neutrino and anti-neutrino scattering, quark and anti-quark densities, the gluons. Electron-positron interaction, scattering and annihilation, hadron production, quarkonium, the tau lepton, production of heavy quarks. Particle production in hadronic interactions, Drell-Yan processes, hadronic jets, quantum chromodynamics. The top quark, the tau neutrino, the three generations. Weak isospin and weak hypercharge, the Glashow-Weinberg-Salam model, electro-weak unification, discovery of W and Z bosons. Electro-weak symmetry breaking, the Higgs field, discovery of the Higgs boson. • Quarks and Leptons, F. Halzen and A.D Martin, Quarks and Leptons, °An Introductory Course in Modern Particle Physics°, ISBN-10: 8126516569
ISBN-13: 978-8126516568 • Notes http://webusers.fis.uniroma3.it/~ceradini/efns.html
-
ORESTANO DOMIZIA
(syllabus)
Symmetries and conservation laws, continuous and discrete trasforms, parity, charge conjugation,
(reference books)
time reversal. Relativistic quantum equations, Klein-Gordon equation, Dirac equation, negative Energy solutions, helicity, non-relativistic limit, the spin, anti-particles. Solutions for zero mass, properties of neutrinos. Relativistic perturbation theory, quantum electrodynamics, Feynman diagrams, the propagator. Relativistic expression of Rutherford cross section, Mott, Dirac and Rosenbluth cross section. Cosmic rays, primary and secondary components, discovery of mesons. Properties of muon and pion, strange particles, isospin multiplets. Elementary particles and fundamental interactions, leptons and hadrons, mesons and baryons, anti-particles. Hadronic interactions, isospin, the Yukawa model, pion-nucleon elastic scattering, the Delta resonance, baryonic and mesonic resonances, meson and baryon multiplets. Unitary symmetries, SU(2), SU(3), static quark model, u-d-s quarks, representation of baryons and mesons, magnetic moment of baryons, the colour of quarks. Weak interactions, nuclear beta decay, Fermi and Gamow-Teller transitions, parity nonconservation, beta decay of polarized Co60. Helicity of the neutrino, V-A interaction. Muon decay, the Fermi constant. Pion decay, production of neutrino beams, leptonic number conservation, the two neutrinos e/mu. Neutrino interactions, the weak interaction propagator. Particle decays in the quark model, weak decays of strange particles, the Cabibbo angle. K0 mesons, CP eigenstates, K0L and K0S mesons, the Glashow-Iliopoulos-Maiani hypothesis and the charm quark. CP-symmetry violation, the Cabibbo-Kobayashi-Maskawa miixing matrix and the beauty quark. Inelastic lepton-nucleon scattering, struccature functions, Bjorken scaling, the parton model, parton densities, Inelastic neutrino and anti-neutrino scattering, quark and anti-quark densities, the gluons. Electron-positron interaction, scattering and annihilation, hadron production, quarkonium, the tau lepton, production of heavy quarks. Particle production in hadronic interactions, Drell-Yan processes, hadronic jets, quantum chromodynamics. The top quark, the tau neutrino, the three generations. Weak isospin and weak hypercharge, the Glashow-Weinberg-Salam model, electro-weak unification, discovery of W and Z bosons. Electro-weak symmetry breaking, the Higgs field, discovery of the Higgs boson. • W. E. Burcham and M. Jobes, Nuclear and Particle Physics, Pearson Education.
• Appunti del corso di Istituzioni di Fisica Nucleare e Subnucleare, http://webusers.fis.uniroma3.it/~ceradini/efns.html |
8 | FIS/04 | 54 | 24 | - | - | Core compulsory activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20402210 -
CONDENSED MATTER PHYSICS
(objectives)
The course aims to apply the methods of mechanics quantum to the description of the fundamental properties of solid matter.
-
GALLO PAOLA
(syllabus)
Overview on condensed matter. Geometric description of crystals: direct and reciprocal lattices and Brillouin zone. Scattering of particles by crystals: x-rays, electrons and neutrons. Quasicrystals. Classification of crystalline solids and bonds. Adiabatic approximation (Born-Openheimer). Lattice vibrational dynamics, phonons. Specific heats of Einstein, Debye and electronic. Electrons in periodic potentials: the Bloch theorem. Theory of the free electron in metals. The many electrons Hamiltonian and one electron approximations: Hartree and Hartree Fock equation. Band theory in crystals: Tight Binding method and the nearly free electron approximation. Electronic properties of relevant crystals. Transport in metals. Intrinsic and doped semiconductors and transport. p-n junction. Superconductivity.
(reference books)
TESTO PRINCIPALE:
Giuseppe Grosso and Giuseppe Pastori Parravicini Solid State Physics Academic Press ALTRI TESTI UTILIZZATI: Neil W. Ashcroft N. David Mermin Solid State Physics Saunders College Charles Kittel Introduzione alla Fisica Dello Stato Solido Casa Editrice Ambrosiana WRITTEN NOTES, PRESENTATIONS AND EXERCISES will be published on the course web site http://webusers.fis.uniroma3.it/~gallop/
-
LUPI LAURA
(syllabus)
Exercises on the following topics:
(reference books)
Geometric description of crystals: direct and reciprocal lattices and Brillouin zone. Scattering of particles by crystals: x-rays. Quasicrystals. Lattice vibrational dynamics, phonons. Specific heats of Einstein, Debye and electronic. Band theory of electrons in crystals: Tight Binding method and the nearly free electron approximation. Intrinsic and doped semiconductors and transport. EXERCISES published on the webpage of the class.
Exams of previous years available on the same webpage. |
8 | FIS/03 | 60 | 24 | - | - | Core compulsory activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20402211 -
COMPLEMENTS OF MATHEMATICAL METHODS FOR PHYSICS
(objectives)
The aim of the course is to learn the basic tools to deal with Lie algebras and their representations and to acquire computer calculation techniques,both for symbolic and for numerical calculations. Topics of the course
will be dealt with using either Wolfram Language and Python or alternative computer languages preferred by the student.
-
FRANCESCHINI ROBERTO
(syllabus)
Group Theory (CA)
(reference books)
SU(2) and SU(3) The Killing Form Simple Lie Algebras Representations Simple Roots and the Cartan Matrix The Classical Lie Algebras The Exceptional Lie Algebras Casimir Operators and Freudenthal’s Formula The Weyl Group Weyl’s Dimension Formula Reducing Product Representations Subalgebras Branching Rules Numerical Methods Refresh on Probability and Random variables Refresh on Measurement, uncertainty and its propagation Refresh on Curve-fitting, least-squares, optimization Classical numerical integration, speed of convergence Integration MC (Mean, variance) Sampling Strategies Applications Propagation of uncertainties Generation according to a distribution Sections of the textbooks for each topic are listed on http://webusers.fis.uniroma3.it/franceschini/cmm.html Robert Cahn - Semi-Simple Lie Algebras and Their Representations - Dover Publications 2014 (available at Roma TRE BAST Sede Centrale and from the author's web page ) Weinzierl, S. - Introduction to Monte Carlo methods arXiv:hep-ph/0006269 Taylor, J. - An introduction to error analysis - University Science Books Sausalito, California Disponibile nella biblioteca Scientifica di Roma Tre Dubi, A. - Monte Carlo applications in systems engineering - Wiley Disponibile nella biblioteca Scientifica di Roma Tre readings supplied during class and listed on the web http://webusers.fis.uniroma3.it/franceschini/cmm.html |
6 | FIS/02 | 34 | 18 | - | - | Core compulsory activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Course | Credits | Scientific Disciplinary Sector Code | Contact Hours | Exercise Hours | Laboratory Hours | Personal Study Hours | Type of Activity | Language | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20401878 -
EXTRAGALACTIC ASTROPHYSICS
(objectives)
The course aims to provide the student with the basic concepts of astrophysics of our Galaxy and external galaxies
-
LA FRANCA FABIO
(syllabus)
1.
(reference books)
Principles of Stellar Evolution 2. Principles of Observational Astronomy 3. The Milky Way 4. The central Black Hole of the Milky Way 5. Galaxy classification 6. Mass distribution, potentials, and isophotes 7. Rotation curves 8. Scaling relations in galaxies 9. Astrophysical Spectroscopy: cold gas, hot gas and molecular gas 10. Velocity, temperature and density measures 11. Active Galactic Nuclei: the structure and the central engine 12. The measure of the supermassive black hole masses 13. The evolution of the Active Galactic Nuclei 14. AGN/galaxy coevolution 15. Measure and history of the Star Formation Rate of galaxies 16. Luminosity and mass functions evolution of AGN and galaxies. Synthesis of the cosmic backgrounds. 17. Metallicity 18. Clusters of galaxies Testo: L.S. Sparke and J.S. Gallagher
Galaxies in the Universe - An Introduction. Cambridge University Press |
6 | FIS/05 | 60 | - | - | - | Core compulsory activities | ITA | ||||||||||||||||||
20410041 -
ASTROFISICA GENERALE
(objectives)
Provide the student with a complete overview of the fundamental physical processes underlying Astrophysics
-
BIANCHI STEFANO
(syllabus)
Radiative processes in Astrophysics: Transfer Equation, Bremsstrahlung, Synchrotron Emission, Inverse Compton Effect, Pairs Production, Cherenkov Effect
(reference books)
Nuclear Interactions, Nuclear Lines Spectroscopy: Spectroscopic Notation, Energy Levels, Selection Rules, Ionization Balance, Emission and Absorption Lines, Density and Temperature Measures, Dust and Extinction Molecular Spectroscopy Other Messengers in Astrophysics: Gravitational Waves, Neutrinos Particle Acceleration: Fermi Mechanisms, Shocks (LONGAIR MALCOM S. ) HIGH ENERGY ASTROPHYSICS 3RD ED. [CAMBRIDGE 2011]
(G.B. RYBICKI, A.P. LIGHTMAN) RADIATIVE PROCESSES IN ASTRIPHYSICS [WILEY] (SHAPIRO S.L, TEUKOLSKY S.A.) BLACK HOLES, WHITE DWARFS AND NEUTRON STARS [WILEY] G. Ghisellini “Radiative Processes in High Energy Astrophysics”, 2013 |
6 | FIS/05 | 60 | - | - | - | Core compulsory activities | ITA | ||||||||||||||||||
20402213 -
ELEMENTS OF EARTH PHYSICS AND OF ENVIRONMENT
(objectives)
The course is structured on the basic concepts of Solid and Fluid Earth Physics in order to provide the student with a coherent and updated picture of this discipline, both from a theoretical and an experimental point of view
-
PLASTINO WOLFANGO
(syllabus)
Gravity
(reference books)
The Earth’s size and shape. Gravitation. The Earth’s rotation. The Earth’s figure and gravity. Gravity anomalies. Interpretation of gravity anomalies. Isostasy. Rheology. Seismology Elasticity theory. Seismic waves. Earthquake seismology. Seismic wave propagation. Internal structure of the Earth. Earth’s age and thermal properties Geochronology. The Earth’s heat. Geomagnetism and paleomagnetism The Physics of magnetism. Rock magnetism. Geomagnetism. Paleomagnetism. Fundamentals of Geophysical Fluid Dynamics Time derivatives for fluids. The mass continuity equation. The momentum equation. The equation of state. Thermodynamic relations. Thermodynamic equation for fluids. Compressible and incompressible flow. The energy budget. Physics of the Atmosphere Heterogeneous systems. Transformations of moist air. Hydrostatic equilibrium. Static stability. Radiative transfer. Large-scale motion. Wave propagation. The general circulation. Dynamic stability. Physics of the Ocean Oceans and Seas. Atmospheric influences. The oceanic heat budget. Wind driven ocean circulation. Deep circulation in the ocean. Equatorial processes. Ocean waves. Coastal processes and tides. Stacey F.D. and Davis P.M. - Physics of the Earth. Cambridge University Press, 2008 - ISBN:9780521873628
Vallis G.K. - Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 2006 - ISBN:9780521849692 |
6 | FIS/06 | 48 | - | - | - | Related or supplementary learning activities | ITA | ||||||||||||||||||
20402214 -
ASTROPHYSICS OF STARS
(objectives)
Provide the student with a good knowledge of stellar structure and evolution, with applications relevant to general astrophysical problems, such as star dating and the age of the Universe, the role of the abundance of light elements of evolution and the connection with cosmological abundances , the variable stars and the supernovae, and their role for the determination of the distance scale, the compact objects (white dwarfs, neutron stars and their importance in the evolution of interactive binary. The aim is therefore to provide the basis knowledge about the stars for astrophysical applications, even not stellar
-
VENTURA PAOLO
(syllabus)
Stellar Observations
(reference books)
Magnitude of a star. Brightness intensity. Apparent and relative magnitude. Black body spectrum. Wien and Stefan-Boltzmann laws. The colors of stars. Optical Depth. Radiation transport equation. Eddington-Barbier approximation. Gray atmosphere. Definition of photosphere and effective temperature. Hertzprung-Russell and Color-Magnitude diagrams. Stellar spectra. Saha and Boltzman equations. Hydrogen lines. Balmer's discontinuity. Spectral Types. Radiation and opacity transport. Electromagnetic radiation. Relation between energy radial flux and temperature gradient. Opacity and free path of photons. Rosseland's average opacity coefficient. Photon absorption mechanisms: bound-bound, , bound-free, and free-free. Kramer's opacity. Thomson scattering. Electronic conduction. Relative importance of the various types of opacity in the density-temperature plan. Convection in the stars. Convective instability. Schwarzschild and Ledoux criteria for convective instability. Main causes for establishing convective instability. Convection efficiency. The "Mixing Length Theory" and the free parameter alpha. Convection-related uncertainties. Free parameter calibration. Problems related to turbulence and non-local nature of convection. State equation Equation of state for stellar interiors. Ideal gas and radiation pressures. Electron degeneracy. The role of the Pauli Principle. The Fermi momentum. Partial and complete degeneracy. Equation of state for degenerate gas in the relativistic and non-relativistic case. Crystallization. Neutronization. Relative importance of the various types of pressure in the density-temperature plane. Generation of nuclear energy Nuclear reactions. Mass defect. Tunnel effect. Resonances. Cross sections. Rate of nuclear reactions. Nuclear energy generation coefficient. Gamow Peak. Functional dependence of the rate of nuclear reactions on the temperature. Electrons screening. The proton-proton chain. The CNO cycle and the relative equilibrium. The 3α reactions. The equations of stellar structure Equilibrium equations of the star. Mass Conservation. Expression and physical significance of the gravitational energy generation coefficient. Energy conservation. Hydrostatic balance. Energy transport. Neutrinos energy. Treatment of atmospheric layers. Stellar structure equations in adimensional form. The birth of the stars and early evolutionary phases The Virial theorem. Jeans criterion for collapse. The Jeans mass. Hierarchical fragmentation. Radiative cooling. Isothermal and adiabatic collapse. Accretion disks and disk structure. Energy balance during the accretion phase. Protostars. Hayashi theory for pre-main sequence stars. Hayashi lines and their physical meaning. Stratification of entropy into radiative and convective stars. Pre-main sequence evolutionary tracks in the HR diagram. The Kelvin-Helmotz time scale. The Palla & Stahler model. Evolution of the core in hydrostatic equilibrium. The "birthline”. Pre main sequence lithium burning. Lithium in stars belonging to young associations. The mass limit for the ignition of hydrogen burning. Brown dwarfs and giant planets. The role of electronic degeneracy. "Disk-locking" and magnetic braking. Core hydrogen burning Main sequences (MS) of open and globular clusters. Mass-Luminosity relation for MS stars. The shape of the Zero Age Main Sequence (ZAMS). Lower and upper limit for the mass of MS stars. Structure of MS stars of different mass: the extension of convective and radiative zones. Mass limit for proton - proton and CNO burning. The role of the formation of molecular hydrogen in the external regions of the stars on the ZAMS Morphology. Main sequences observed in globular and open clusters: interpretation. Evolutionary tracks of main sequence stars. Theoretical uncertainties about the evolution of MS stars: overshooting from the core, temperature gradient in convective envelopes. The red giant stage Post-MS evolution. Giant expansion. The Schonberg-Chandrasekhar instability. Degeneracy of the helium core in low mass models. First dredge-up: causes and effects. Extension of the convective envelope of the stars according to the effective temperature. Luminosity functions. Bump of the luminosity function during the giant phase. Evolution of low-mass stars up to the red giant tip. The role of the CNO shell. Core mass - luminosity relationship for low-mass stars. The role of neutrinos for the determination of the temperature peak. Helium Flash. Flash thermodynamics. The role of electron degeneracy. Mini-flash episodes. Comparison of pre- and post-flash thermodynamic structures. Horizontal branch evolution: evolutionary tracks towards the blue and the red side of the HR diagram. The role of helium. Interpretation of the horizontal branches of globular clusters: the role of age and mass loss. Helium burning in non degenerate stars. "Blue loop" in the HR diagram. Asymptotic branch evolution Second dredge-up. Degeneracy of carbon and oxygen core. Double shell nuclear burning. Thermal instability of the thermal pulse. Asymptotic Giant branch evolution. Luminosity - core mass relationship for AGB Stars. "Hot Bottom Burning" and Third Dredge-up. Llithium-rich stars. Carbon stars. Changes in the surface chemistry of AGB stars of different mass. Super-AGB evolution: Convective flame and the formation of a core of Oxygen and Neon. Dust production during the asymptotic giant branch phase. Interpretation of the observational diagrams of evolved stellar populations in the Magellanic Clouds. White dwarf Late stages of evolution of stars of small or intermediate mass. The Planetary Nebula evolution. Chandrasekhar's theory for white dwarf stars. Structural properties of white dwarfs: mass-radius relationship. Energy balance of white dwarfs. Luminosity of White Dwarfs. Cooling theory. Variable stars Stellar variability: historical introduction. Radial oscillations. Period of propagation of an acoustic perturbation. The comparison between variable stars and thermal machines. Mechanisms ε and k for the production of the ‘driving’ mechanism of pulsations. Hydrogen and helium partial ionization zones as drivers of star variability. Distribution of variable stars in the HR diagram, and its interpretation. Strips of instability. Cepheid and RR Lyrae Variables: Evolutionary Stage, and Period-Luminosity relationships. Stellar clusters The spatial distribution of stellar clusters across the Milky Way. Distribution of stars in clusters in the color-magnitude plane. Differences between open and globular clusters. The isochrone fitting method: turn-off magnitude as distance and age indicator. Reddening and extinction. Impact of metallicity on the color of the main sequence of star clusters. Interpretation of the horizontal branches of globular clusters. Chemical anomalies in globular clusters stars. Oxygen-sodium and magnesium-aluminum anti-correlations. Photometric evidence of the presence of one or more stellar components enriched in helium. The AGB scenario for the formation of multiple populations in globular clusters. Massive stars evolution The final stages of the evolution of massive stars: LBV and Wolf-Rayet stars. Supernovae: Supernovae observations of types Ia, Ib, Ic and II. Post-carbon evolutionary phases: formation of a degenerate core. Collapse of the core. Core photo-disintegration .Explosive Mechanisms. Title: Stellar structure and evolution
Authors: Kippenhahn, Weigert Springer-Verlag 1990 Title: Introduction to stellar Astrophysics (vol. 2) Author: E. Bohm-Vitense Cambridge University Press 1992 Title: Introduction to stellar Astrophysics (vol. 3) Author: E. Bohm-Vitense Cambridge University Press 1992 |
6 | FIS/05 | 48 | - | - | - | Core compulsory activities | ITA | ||||||||||||||||||
20410086 -
ELEMENTI DI RELATIVITA' GENERALE, ASTROFISICA E COSMOLOGIA
(objectives)
The course aims to provide students with the basic concepts of general relativity and its applications to physical systems, with particular reference to compact objects (black holes), gravitational waves and the universe
-
BRANCHINI ENZO FRANCO
(syllabus)
- SPECIAL RELATIVITY. VECTORS AND TENSORS. METRIC TENSOR. ENERGY-MOMENTUM TENSOR.
(reference books)
- GENERAL RELATIVITY. UNDERLYING CONCEPTS. AFFINE CONNECTION. PARALLEL TRANSPORT. GEODESICS EQUATION. - SYMMETRY AND KILLING VECTORS. RIEMANN TENSOR. SINGULARITY. - EINSTEIN EQUATIONS. - SCHWARZSCHILD METRIC. - ORBITS IN THE SCHWARZSCHILD METRIC. MERCURY’S ORBIT. - NON ROTATING BLACK HOLES. EVENT HORIZON AND THE CHOICE OF COORDINATES. - KERR METRIC. ROTATING BLACK HOLES AND FRAME DRAGGING. - INTRODUCTION TO GRAVITATIONAL WAVES. - THE COSMOLOGICAL PRINCIPLE AND ROBERTSON-WALKER METRIC. - FRIEDMAN EQUATIONS. NEWTONIAN LIMIT. - COSMOLOGICAL REDSHIFT. COSMOLOGICAL HORIZONS. CO-MOVING COORDINATES AND PROPER DISTANCE. - LUMINOSITY DISTANCE. ANGULAR DIAMETER DISTANCE. - OBSERVATIONAL TESTS: HUBBLE TEST, ANGULAR DIAMETER TEST, NUMBER COUNTS. - FLUIDS RELEVANT IN COSMOLOGY: EQUATION OF STATE AND DENSITY EVOLUTION. Cosmological constant. - THE EQUIVALENCE EPOCH. - THERMAL HISTORY OF THE UNIVERSE: DECOUPLING. RECOMBINATION. - MATTER/ANTIMATTER AND THE BARYON ASYMMETRY. - PLANCK EPOCH AND QUANTUM GRAVITY. - HORIZON PARADOX. FLATNESS PARADOX. INFLATIONARY SOLUTION. COSMIC INFLATION. - DARK MATTER. - A BRIEF HISTORY OF THE UNIVERSE. HADRONIC EPOCH. LEPTONIC EPOCH. RADIATIVE EPOCH. - NEUTRINO DECOUPLING. - COSMOLOGICAL NUCLEOSYNTHESIS. MATTER EPOCH. FIRST OBJECTS. RE-IONIZATION. - INHOMOGENEITY AND ANISOTROPY. JEANS GRAVITATIONAL INSTABILITY AND THE GROWTH OF COSMIC STRUCTURES Carroll S. Spaceitme Geometry [Pearson 2003]
Coles P., Lucchin F. Cosmology [Wiley 2000] Kolb E., Turner M. The eraly Universe [Addison Wesley 1990] |
6 | FIS/05 | 48 | - | - | - | Core compulsory activities | ITA | ||||||||||||||||||
|
Course | Credits | Scientific Disciplinary Sector Code | Contact Hours | Exercise Hours | Laboratory Hours | Personal Study Hours | Type of Activity | Language | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20402143 -
COSMOLOGY
(objectives)
The course will explore in detail some aspects of Modern cosmology which merely topics high interest both from the point of view of physical phenomena involved, both from the point of view of the methodologies used. Particular attention is given to comparing observations-theory, or the relationship-Cosmology Extragalactic Astrophysics
-
BRANCHINI ENZO FRANCO
(syllabus)
This course discusses in detail the key issues in Modern Cosmology, including outstanding problems. The goal is to provide an overview of the subject and to illustrate the main techniques, theoretical and observational alike, commonly used in this field. The main topics are:
(reference books)
- Density fluctuation in a cosmological scenario: generation and growth. Gravitational Instability. Newtonian limit and the Jeans Theory. Linear theory. - Cosmic Microwave Background temperature fluctuation. Acoustic peaks. The Sachs-Wolfe effect. Secondary effects. - - Cosmic backgrounds in different energy bands: Radio, X-ray and gamma-ray - Secondary anisotropies. The Gunn-Peterson effect, cosmic reionization, Ly-alpha forest and Sunayev-Zel'dovich effect. - The intergalactic medium at low redshift and the missing baryons problem. - Large scale structures. Statistical analysis of the galaxy distribution in space. Correlation functions and power spectra. - Luminous vs. dark matter. Galaxy bias. - Nonlinear growth of density fluctuations. The Zel'dovich approximation. The spherical collapse model. The halo model. Press-Schechter theory and its extension. - Peculiar velocities, distance indicators and their calibrations. - Gravitational lensing: Theory and observations. Micro-lensing. Strong lensing. Weak lensing. Peacock J. Physical Cosmology. Cambridge Univ.Press
Longair M. Galaxy Formation [A&A Library ] Coles P., Lucchin F. Cosmology [Wiley 2000] Various reviews provided during the course. |
8 | FIS/05 | 64 | - | - | - | Core compulsory activities | ITA | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Course | Credits | Scientific Disciplinary Sector Code | Contact Hours | Exercise Hours | Laboratory Hours | Personal Study Hours | Type of Activity | Language | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20402228 -
TRAINING
|
6 | - | - | - | - | Other activities | ITA | |||||||||||||||||||
20410392 -
Lingua inglese
|
4 | - | - | - | - | Other activities | ITA | |||||||||||||||||||
20401594 -
FINAL EXAM
|
30 | - | - | - | - | Final examination and foreign language test | ITA | |||||||||||||||||||
|
Course | Credits | Scientific Disciplinary Sector Code | Contact Hours | Exercise Hours | Laboratory Hours | Personal Study Hours | Type of Activity | Language | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20401904 -
THEORETICAL PHYSICS I
(objectives)
To study classical electrodynamics in detail, to provide the elements of relativistic quantum mechanics. Provide the basics of field theory and QED
|
8 | FIS/02 | 46 | 22 | - | - | Core compulsory activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20402209 -
NUCLEAR AND SUBNUCLEAR PHYSICS
(objectives)
To show the basic concepts of elementary particles and the phenomenology of fundamental interactions.
|
8 | FIS/04 | 54 | 24 | - | - | Core compulsory activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20402210 -
CONDENSED MATTER PHYSICS
(objectives)
The course aims to apply the methods of mechanics quantum to the description of the fundamental properties of solid matter.
|
8 | FIS/03 | 60 | 24 | - | - | Core compulsory activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20402211 -
COMPLEMENTS OF MATHEMATICAL METHODS FOR PHYSICS
(objectives)
The aim of the course is to learn the basic tools to deal with Lie algebras and their representations and to acquire computer calculation techniques,both for symbolic and for numerical calculations. Topics of the course
will be dealt with using either Wolfram Language and Python or alternative computer languages preferred by the student.
-
FRANCESCHINI ROBERTO
(syllabus)
Group Theory (CA)
(reference books)
SU(2) and SU(3) The Killing Form Simple Lie Algebras Representations Simple Roots and the Cartan Matrix The Classical Lie Algebras The Exceptional Lie Algebras Casimir Operators and Freudenthal’s Formula The Weyl Group Weyl’s Dimension Formula Reducing Product Representations Subalgebras Branching Rules Numerical Methods Refresh on Probability and Random variables Refresh on Measurement, uncertainty and its propagation Refresh on Curve-fitting, least-squares, optimization Classical numerical integration, speed of convergence Integration MC (Mean, variance) Sampling Strategies Applications Propagation of uncertainties Generation according to a distribution Sections of the textbooks for each topic are listed on http://webusers.fis.uniroma3.it/franceschini/cmm.html Robert Cahn - Semi-Simple Lie Algebras and Their Representations - Dover Publications 2014 (available at Roma TRE BAST Sede Centrale and from the author's web page ) Weinzierl, S. - Introduction to Monte Carlo methods arXiv:hep-ph/0006269 Taylor, J. - An introduction to error analysis - University Science Books Sausalito, California Disponibile nella biblioteca Scientifica di Roma Tre Dubi, A. - Monte Carlo applications in systems engineering - Wiley Disponibile nella biblioteca Scientifica di Roma Tre readings supplied during class and listed on the web http://webusers.fis.uniroma3.it/franceschini/cmm.html |
6 | FIS/02 | 34 | 18 | - | - | Core compulsory activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Course | Credits | Scientific Disciplinary Sector Code | Contact Hours | Exercise Hours | Laboratory Hours | Personal Study Hours | Type of Activity | Language | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20410020 -
COMPLEMENTI DI FISICA DELLA MATERIA CONDENSATA
(objectives)
Give the student an in-depth understanding of the transport properties of solid systems and their response to electromagnetic fields
-
DE SETA MONICA
(syllabus)
Electronic properties of selected crystals
(reference books)
Reminds on band structure calculation methods. Electronic structure of molecular and ionic solids. Band structure of II-VI, III-V systems and of covalent crystals with diamond structure. Impurity levels in doped semiconductors. Internal energy, pressure and compressibility of an electron gas. Band structures and Fermi surfaces of selected metals. Transport properties: The Drude Model. Semiclassical Equations of transport. Boltzmann equation. Relaxation time approximation. Static and dynamic electrical conductivity in metals. Thermoeletrictic power and thermal conductivity. Transport in homogeneous and doped semiconductors. Drift and diffusion currents. Generation and recombination of electron-hole pairs in semiconductors. Continuity equation. Recombination times and diffusion length. Current voltage characteristics of the p-n junction. Metal-semiconductor junction. Electron phonon interaction. Matrix elements and selection rules. Optical properties of solids Maxwell Equations in solids. Complex Dielectric Constant. Kramers Kronig Relations. Lorentz Oscillator. Absorption and reflection coefficients. The Drude theory of the optical properties of metals. Optical properties of semiconductors and insulators. Direct interband transitions and critical points. Optical constants of Ge and Graphite. Absorption from impurity levels. Exciton effects. Indirect phonon-assisted transitions. Two-photon absorption. Raman Scattering. Optical phonon absorption. Electron gas in magnetic fields Energy levels and density of states of a free electron gas in a magnetic fields. Orbital magnetic susceptibility and Haas-van Alphen effect. Magneto-resistivity and classical Hall effect. Phenomenology of the quantum Hall effect. Magnetic properties of matter. Quantum mechanical treatment of magnetic suscectibility. Pauli paramagnetism. Magnetic suscectibility of closed-shell systems. Permanent magnetic dipoles in atoms and ions with partially filled shells. Paramagnetism of localized magnetic moments. Curie and Van Vleck paramagnetism. Magnetic ordering in crystals. Mean field theory of ferromagnetism: Weiss model. Curie-Weiss law. Critical temperature in ferromagnetic materials. Ferromagnetism, exchange interaction and Heisemberg model. Microscopic origin of the coupling between localized magnetic moments. Dipolar interaction and magnetic domains. Ashcroft-Mermin: "Solid State Physics"
Grosso-Pastori-Parravicini: "Solid State Physics" |
9 | FIS/03 | 72 | - | - | - | Core compulsory activities | ITA | ||||||||||||||||||||||||||||||||||||
20410022 -
Quantum Theory of Matter
(objectives)
To offer an introduction to the methods of field theory applied to the study of many-body systems of Matter Physics. The course program includes in the first part the study of the perturbative methods and the theory of linear response applied to the electron gas with the use of Green functions and Feynman diagrams. In the second part the theoretical study of the quantum phenomena that characterize matter at low temperatures such as superfluidity and superconductivity is developed
-
ROVERE MAURO
(syllabus)
Ist Part
(reference books)
1 - Characterization of the states of matter. Ordered and disordered structures. Classical and quantum limit for atomic systems. Examples of phase diagrams: argon, H2O, He4. Density correlation function and two particle distribution function. Examples of structure of some liquids 2 - Homogeneous electron gas in a neutralizing background (jellium model). Zero order approximation: Sommerfeld theory. Coulombian interaction as perturbation. Hartree-Fock theory for electron gas. Distribution function for electron gas. Definition of correlation energy. 3 - The Green Functions for the Electron Gas. Green functions for non-interacting electrons. Lehmann representation. Perturbative development for Green's functions. Dyson equation. Self-energy. 4 - Polarization propagator. Polarization diagrams. Proper polarization. Correlation energy in terms of polarization propagator. Random phase approximation (RPA). Dielectric function in RPA. High-density limit, Thomas-Fermi screen. Limit to large wavelengths, plasma oscillations. 2nd Part 1 - The phenomenon of superfluity. The phase diagram of He4. The superfluid phase of liquid helium. The theory of the two fluids. Landau's theory: critical speed, rotons and phonons. Bogoliubov's theory of interacting bosons. Hydrodynamics and vorticity. Vortices as liquid helium excitations. Recent achievements of Bose-Einstein condensation. 2 - The phenomenon of superconductivity. Zero resistance, Meissner Effect, Critical Magnetic Field, Specific heat. Analogies with the phenomenon of superfluidity. London equation. Thermodynamic considerations. Superconductors of the first type and of the second type. 3 - Microscopic theory of superconductivity. Electron-phonon interaction. Attractive interaction between electrons. Cooper pairs. Bardeen-Cooper-Schrieffer's theory (BCS): fundamental state, definition of energy gap. Excited states. Calculation at finite temperature. Quantization of magnetic flux. 4 - Phenomenological theory of Ginzburg-Landau. Landau theory of phase transitions. Free energy of superconductors. Ginzburg-Landau equations and relation with the London equation. Symmetry breaking and transition from normal to superconducting state. A.L.FETTER, J.D.WALECKA "QUANTUM THEORY OF MANY PARTICLES"
G.GROSSO, G.PASTORI-PARRAVICINI "SOLID STATE PHYSICS" |
8 | FIS/03 | 80 | - | - | - | Core compulsory activities | ITA | ||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||
|
Course | Credits | Scientific Disciplinary Sector Code | Contact Hours | Exercise Hours | Laboratory Hours | Personal Study Hours | Type of Activity | Language | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20402215 -
EXPERIMENTAL METHODS IN CONDENSED MATTER PHYSICS
(objectives)
Provide students with the theoretical and methodological basis of
spectroscopic characterization of fundamental properties physical properties of the material in the various stages of aggregation
-
RUOCCO ALESSANDRO
(syllabus)
Basic concepts and potential scattering in atomic collision.
(reference books)
Electron-atom collision. Scattering from surfaces. Energy loss spectroscopy. Dielectric theory. Resonant Channels, Fano profiles. Photoemission and photoabsorption spectroscopies. Phenomenology of photoemission and photoabsorption experiments. The Koopmans theorem, satellite peaks, Chemical shift. Photemission from solids, the three-step model. Angle resolved photoemission, photoelectron diffraction. Exafs and Nexafs. BJ B.H. Bransden, C.J. Joachain “Physics of Atoms and Molecules”, Longman Scientific and Technical, John Whiley and sons
CM C.M. Bertoni, Radiation-matter interaction: absorption, photoemission, scattering , in: “Synchrotron radiation: fundamentals, methodologies and applications”, S. Mobilio and G. Vlaic Eds.. SIF, Bologna (2003) Lu H. Luth, “Surface and interface of solid materials”, Springer study edition, 1995 Hu S. Hufner, “Photoelectron spectroscopy”, Solid State Sciences Vol. 82, Springer, 1995 SM S. Mobilio, Interaction between radiation and matter: an introduction, in: “Synchrotron radiation: fundamentals, methodologies and applications”, S. Mobilio and G. Vlaic Eds.. SIF, Bologna (2003) |
9 | FIS/03 | 48 | 36 | - | - | Core compulsory activities | ITA | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Course | Credits | Scientific Disciplinary Sector Code | Contact Hours | Exercise Hours | Laboratory Hours | Personal Study Hours | Type of Activity | Language | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20402228 -
TRAINING
|
6 | - | - | - | - | Other activities | ITA | |||||||||||||||||||
20410392 -
Lingua inglese
|
4 | - | - | - | - | Other activities | ITA | |||||||||||||||||||
20401594 -
FINAL EXAM
|
30 | - | - | - | - | Final examination and foreign language test | ITA | |||||||||||||||||||
|
Course | Credits | Scientific Disciplinary Sector Code | Contact Hours | Exercise Hours | Laboratory Hours | Personal Study Hours | Type of Activity | Language | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20401904 -
THEORETICAL PHYSICS I
(objectives)
To study classical electrodynamics in detail, to provide the elements of relativistic quantum mechanics. Provide the basics of field theory and QED
|
8 | FIS/02 | 46 | 22 | - | - | Core compulsory activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20402209 -
NUCLEAR AND SUBNUCLEAR PHYSICS
(objectives)
To show the basic concepts of elementary particles and the phenomenology of fundamental interactions.
|
8 | FIS/04 | 54 | 24 | - | - | Core compulsory activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20402210 -
CONDENSED MATTER PHYSICS
(objectives)
The course aims to apply the methods of mechanics quantum to the description of the fundamental properties of solid matter.
|
8 | FIS/03 | 60 | 24 | - | - | Core compulsory activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20402211 -
COMPLEMENTS OF MATHEMATICAL METHODS FOR PHYSICS
(objectives)
The aim of the course is to learn the basic tools to deal with Lie algebras and their representations and to acquire computer calculation techniques,both for symbolic and for numerical calculations. Topics of the course
will be dealt with using either Wolfram Language and Python or alternative computer languages preferred by the student.
-
FRANCESCHINI ROBERTO
(syllabus)
Group Theory (CA)
(reference books)
SU(2) and SU(3) The Killing Form Simple Lie Algebras Representations Simple Roots and the Cartan Matrix The Classical Lie Algebras The Exceptional Lie Algebras Casimir Operators and Freudenthal’s Formula The Weyl Group Weyl’s Dimension Formula Reducing Product Representations Subalgebras Branching Rules Numerical Methods Refresh on Probability and Random variables Refresh on Measurement, uncertainty and its propagation Refresh on Curve-fitting, least-squares, optimization Classical numerical integration, speed of convergence Integration MC (Mean, variance) Sampling Strategies Applications Propagation of uncertainties Generation according to a distribution Sections of the textbooks for each topic are listed on http://webusers.fis.uniroma3.it/franceschini/cmm.html Robert Cahn - Semi-Simple Lie Algebras and Their Representations - Dover Publications 2014 (available at Roma TRE BAST Sede Centrale and from the author's web page ) Weinzierl, S. - Introduction to Monte Carlo methods arXiv:hep-ph/0006269 Taylor, J. - An introduction to error analysis - University Science Books Sausalito, California Disponibile nella biblioteca Scientifica di Roma Tre Dubi, A. - Monte Carlo applications in systems engineering - Wiley Disponibile nella biblioteca Scientifica di Roma Tre readings supplied during class and listed on the web http://webusers.fis.uniroma3.it/franceschini/cmm.html |
6 | FIS/02 | 34 | 18 | - | - | Core compulsory activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Course | Credits | Scientific Disciplinary Sector Code | Contact Hours | Exercise Hours | Laboratory Hours | Personal Study Hours | Type of Activity | Language | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20402213 -
ELEMENTS OF EARTH PHYSICS AND OF ENVIRONMENT
(objectives)
The course is structured on the basic concepts of Solid and Fluid Earth Physics in order to provide the student with a coherent and updated picture of this discipline, both from a theoretical and an experimental point of view
|
6 | FIS/06 | 48 | - | - | - | Core compulsory activities | ITA | ||||||||||||||||||
20402217 -
ELEMENTARY PARTICLE PHYSICS (MOD. A+B)
(objectives)
module A: acquiring the fundamental knowledge on the phenomenological bases of the Standard Model of Elementary Particles and on the principles of particle detection
module B: acquiring in-depth knowledge of modern data detection and analysis techniques and the current phenomenological framework in the various sectors of Elementary Particle Physics with and without accelerators |
||||||||||||||||||||||||||
20402217-2 -
FISICA DELLE PARTICELLE ELEMENTARI - MOD. B
(objectives)
module A: acquiring the fundamental knowledge on the phenomenological bases of the Standard Model of Elementary Particles and on the principles of particle detection module B: acquiring in-depth knowledge of modern techniques for revealing and analyzing data and the current phenomenological framework in the different sectors of Physics of Elementary Particles with and without accelerators
-
SALAMANNA GIUSEPPE
(syllabus)
SECTION A
(reference books)
a) intro and formal tools: - Relativistic equations, selection rules, cross sections and resonances - Invariance principles and conservation rules, continuous and discrete transformations, Parity, Charge conjugation, Time inversion b) early phenomenology, hadrons: - Strong isospin, Strangeness - Dalitz plots and their interpretation - Quark model, mentions - Parton model, quark and anti-quark density c) Electro-weak interactions, decays, flavour mixing - Hamiltonian and phenomenology of weak interazions. Cabibbo angle, GIM mechanism. Discovery of the charm quark and tau lepton. - Standard model of electro-weak interactions and their experimental confirmations: discovery of neutral currents, W and Z bosons - CP violation, meson mixing - Evolution of events at hadronic colliders, parton shower, jet alorithms and related measurements - Neutrino physics from the Fermi theory to the current day: particularly neutrino oscillations d) QCD: anatomy and at work at modern colliders: - QCD, colour, gluons, confinement, DIS e) Intro to experimental tools, also useful for theorists - Radiation - matter interactions. Basics of particle detection techniques SECTION B - Elements of statistical analysis applied to particle physics experiments - Experiments and results at LEP - Higgs boson searches and mentions of BSM searches at colliders - Examples of experimental neutrino physics and Dark Matter searches - b-jet identification and top quark measurements - Complex detectors: magnetic spectrometers, particle identification, large detectors - Scintillators and optical devices (PMT, APD, SiPM). Solid state detectors. Multi-wire proportional chambers. - E.m. and hadronic calorimetry - Trigger systems and menucs at modern experiments - ROOT analysis software tutorial TEXTS:
(Leo W.R.)Techniques for Nuclear and Particle Physics Experiments [Springer-Verlag 1994] (Perkins D.H.)Introduction to High Energy Physics, 4th edition, [Cambridge University Press, 2000] (Cahn R.N. and Goldhaber G.)The experimental Foundations of Particle Physics [Cambridge University Press, 1989] (Halzen F., Martin A.D.) Quarks and leptons [Wiley] Additional slides and papers will be uploaded on the Course web page
-
PETRUCCI FABRIZIO
(syllabus)
SECTION A
(reference books)
a) intro and formal tools: - Relativistic equations, selection rules, cross sections and resonances - Invariance principles and conservation rules, continuous and discrete transformations, Parity, Charge conjugation, Time inversion b) early phenomenology, hadrons: - Strong isospin, Strangeness. Pion isospin and its expt. determination - Dalitz plots and their interpretation. Theta-tau puzzle. - Quark model, mentions - Parton model, quark and anti-quark density c) Electro-weak interactions, decays, flavour mixing - Hamiltonian and phenomenology of weak interazions. Experimental constraints from Wu (P violation) and Goldhaber (neutrino helicity) - Cabibbo angle, GIM mechanism. Discovery of the charm quark and tau lepton. The 1974 "November revolution" - Standard model of electro-weak interactions and their experimental confirmations: discovery of neutral currents, Gargamelle expt. W and Z bosons discovery and UA1,2 - CP violation, meson mixing. Mentions to B-factories and measurement of CKM angles from B mesons - Evolution of events at hadronic colliders, parton shower, jet alorithms and related measurements - Neutrino physics from the Fermi theory to the current day: particularly neutrino oscillations d) QCD: anatomy and at work at modern colliders: - QCD, colour, gluons, confinement, DIS - Evolution of events at hadron colliders, parton showers, algorithms, measurements with jets at Tevatron. e) Intro to experimental tools, also useful for theorists - Radiation - matter interactions. Basics of particle detection techniques SECTION B - Elements of statistical analysis applied to particle physics experiments - Experiments and results at LEP - Higgs boson searches and mentions of BSM searches at colliders - Examples of experimental neutrino physics and Dark Matter searches - b-jet identification and top quark measurements - Complex detectors: magnetic spectrometers, particle identification, large detectors - Scintillators and optical devices (PMT, APD, SiPM). Solid state detectors. Multi-wire proportional chambers. - E.m. and hadronic calorimetry - Trigger systems and menucs at modern experiments - ROOT analysis software tutorial TEXTS: (Leo W.R.)Techniques for Nuclear and Particle Physics Experiments [Springer-Verlag 1994] (Perkins D.H.)Introduction to High Energy Physics, 4th edition, [Cambridge University Press, 2000] (Cahn R.N. and Goldhaber G.)The experimental Foundations of Particle Physics [Cambridge University Press, 1989] (Halzen F., Martin A.D.) Quarks and leptons [Wiley] Additional slides and papers will be uploaded on the Course web page |
6 | FIS/04 | 52 | - | - | - | Core compulsory activities | ITA | ||||||||||||||||||
20402217-1 -
FISICA DELLE PARTICELLE ELEMENTARI MOD. A
(objectives)
module A: acquiring the fundamental knowledge on the phenomenological bases of the Standard Model of Elementary Particles and on the principles of particle detection
module B: acquiring in-depth knowledge of modern techniques for revealing and analyzing data and the current phenomenological framework in the different sectors of Physics of Elementary Particles with and without accelerators
-
SALAMANNA GIUSEPPE
(syllabus)
SECTION A
(reference books)
a) intro and formal tools: - Relativistic equations, selection rules, cross sections and resonances - Invariance principles and conservation rules, continuous and discrete transformations, Parity, Charge conjugation, Time inversion b) early phenomenology, hadrons: - Strong isospin, Strangeness. Pion isospin and its expt. determination - Dalitz plots and their interpretation. Theta-tau puzzle. - Quark model, mentions - Parton model, quark and anti-quark density c) Electro-weak interactions, decays, flavour mixing - Hamiltonian and phenomenology of weak interazions. Experimental constraints from Wu (P violation) and Goldhaber (neutrino helicity) - Cabibbo angle, GIM mechanism. Discovery of the charm quark and tau lepton. The 1974 "November revolution" - Standard model of electro-weak interactions and their experimental confirmations: discovery of neutral currents, Gargamelle expt. W and Z bosons discovery and UA1,2 - CP violation, meson mixing. Mentions to B-factories and measurement of CKM angles from B mesons - Evolution of events at hadronic colliders, parton shower, jet alorithms and related measurements - Neutrino physics from the Fermi theory to the current day: particularly neutrino oscillations d) QCD: anatomy and at work at modern colliders: - QCD, colour, gluons, confinement, DIS - Evolution of events at hadron colliders, parton showers, algorithms, measurements with jets at Tevatron. e) Intro to experimental tools, also useful for theorists - Radiation - matter interactions. Basics of particle detection techniques SECTION B - Elements of statistical analysis applied to particle physics experiments - Experiments and results at LEP - Higgs boson searches and mentions of BSM searches at colliders - Examples of experimental neutrino physics and Dark Matter searches - b-jet identification and top quark measurements - Complex detectors: magnetic spectrometers, particle identification, large detectors - Scintillators and optical devices (PMT, APD, SiPM). Solid state detectors. Multi-wire proportional chambers. - E.m. and hadronic calorimetry - Trigger systems and menucs at modern experiments - ROOT analysis software tutorial TEXTS:
(Leo W.R.)Techniques for Nuclear and Particle Physics Experiments [Springer-Verlag 1994] (Perkins D.H.)Introduction to High Energy Physics, 4th edition, [Cambridge University Press, 2000] (Cahn R.N. and Goldhaber G.)The experimental Foundations of Particle Physics [Cambridge University Press, 1989] (Halzen F., Martin A.D.) Quarks and leptons [Wiley] Additional slides and papers will be uploaded on the Course web page
-
PETRUCCI FABRIZIO
(syllabus)
SECTION A a) intro and formal tools: - Relativistic equations, selection rules, cross sections and resonances - Invariance principles and conservation rules, continuous and discrete transformations, Parity, Charge conjugation, Time inversion b) early phenomenology, hadrons: - Strong isospin, Strangeness. Pion isospin and its expt. determination - Dalitz plots and their interpretation. Theta-tau puzzle. - Quark model, mentions - Parton model, quark and anti-quark density c) Electro-weak interactions, decays, flavour mixing - Hamiltonian and phenomenology of weak interazions. Experimental constraints from Wu (P violation) and Goldhaber (neutrino helicity) - Cabibbo angle, GIM mechanism. Discovery of the charm quark and tau lepton. The 1974 "November revolution" - Standard model of electro-weak interactions and their experimental confirmations: discovery of neutral currents, Gargamelle expt. W and Z bosons discovery and UA1,2 - CP violation, meson mixing. Mentions to B-factories and measurement of CKM angles from B mesons - Evolution of events at hadronic colliders, parton shower, jet alorithms and related measurements - Neutrino physics from the Fermi theory to the current day: particularly neutrino oscillations d) QCD: anatomy and at work at modern colliders: - QCD, colour, gluons, confinement, DIS - Evolution of events at hadron colliders, parton showers, algorithms, measurements with jets at Tevatron. e) Intro to experimental tools, also useful for theorists - Radiation - matter interactions. Basics of particle detection techniques SECTION B - Elements of statistical analysis applied to particle physics experiments - Experiments and results at LEP - Higgs boson searches and mentions of BSM searches at colliders - Examples of experimental neutrino physics and Dark Matter searches - b-jet identification and top quark measurements - Complex detectors: magnetic spectrometers, particle identification, large detectors - Scintillators and optical devices (PMT, APD, SiPM). Solid state detectors. Multi-wire proportional chambers. - E.m. and hadronic calorimetry - Trigger systems and menucs at modern experiments - ROOT analysis software tutorial TEXTS: (Leo W.R.)Techniques for Nuclear and Particle Physics Experiments [Springer-Verlag 1994] (Perkins D.H.)Introduction to High Energy Physics, 4th edition, [Cambridge University Press, 2000] (Cahn R.N. and Goldhaber G.)The experimental Foundations of Particle Physics [Cambridge University Press, 1989] (Halzen F., Martin A.D.) Quarks and leptons [Wiley] Additional slides and papers will be uploaded on the Course web page |
6 | FIS/04 | 52 | - | - | - | Core compulsory activities | ITA | ||||||||||||||||||
20402218 -
THEORETICAL PHYSICS II
(objectives)
Provide the fundamental notions about radiative corrections in QED, about renormalization and about the electroweak Standard Model. To acquire skills on the phenomenology of subnuclear physics at the energies of current colliders (LHC).
-
DEGRASSI GIUSEPPE
(syllabus)
Feynman diagrams. Tree-level processes. Discrete symmetry
(reference books)
Feynman diagrams and cross-sections. Bhabha and Compton scattering. Gauge invariance. Chiral and Majorana representations for the matrices. Parity, charge conjugation and time-reversal. Radiative Corrections Divergent behavior of an integral. Primitively divergent diagrams. Pauli-Villars regularization. Coupling, mass and wave-function renormalization in a scalar theory. QED. Ward identity. Dimensional regularization. Vacuum polarization and Lamb shift. Running of the coupling constant. Bremsstrahlung, infrared divergencies and their cancellation between real and virtual contributions. Non Abelian Gauge Theories Yang-Mills Lagrangian. QCD. Non Abelian gauge invariance. Running of the strong coupling. Asymtotic freedom. Weak Interactions. Fermi and IVB theories. W propagator. mu decay. Standard Model Lagrangian. Weak angle. Spontaneous symmetry breaking and Higgs mechanism. Mass of the intermediate vector bosons. CKM matrix F. Mandl, G. Shaw: Quantum Field Theory, ed. John Wiley & Sons;
M. Peskin, D. Shroeder: An Introduction to Quantum Field Theory, ed. Frontiers in Physics |
6 | FIS/02 | 34 | 18 | - | - | Related or supplementary learning activities | ITA | ||||||||||||||||||
20410086 -
ELEMENTI DI RELATIVITA' GENERALE, ASTROFISICA E COSMOLOGIA
(objectives)
The course aims to provide students with the basic concepts of general relativity and its applications to physical systems, with particular reference to compact objects (black holes), gravitational waves and the universe
-
BRANCHINI ENZO FRANCO
(syllabus)
- SPECIAL RELATIVITY. VECTORS AND TENSORS. METRIC TENSOR. ENERGY-MOMENTUM TENSOR.
(reference books)
- GENERAL RELATIVITY. UNDERLYING CONCEPTS. AFFINE CONNECTION. PARALLEL TRANSPORT. GEODESICS EQUATION. - SYMMETRY AND KILLING VECTORS. RIEMANN TENSOR. SINGULARITY. - EINSTEIN EQUATIONS. - SCHWARZSCHILD METRIC. - ORBITS IN THE SCHWARZSCHILD METRIC. MERCURY’S ORBIT. - NON ROTATING BLACK HOLES. EVENT HORIZON AND THE CHOICE OF COORDINATES. - KERR METRIC. ROTATING BLACK HOLES AND FRAME DRAGGING. - INTRODUCTION TO GRAVITATIONAL WAVES. - THE COSMOLOGICAL PRINCIPLE AND ROBERTSON-WALKER METRIC. - FRIEDMAN EQUATIONS. NEWTONIAN LIMIT. - COSMOLOGICAL REDSHIFT. COSMOLOGICAL HORIZONS. CO-MOVING COORDINATES AND PROPER DISTANCE. - LUMINOSITY DISTANCE. ANGULAR DIAMETER DISTANCE. - OBSERVATIONAL TESTS: HUBBLE TEST, ANGULAR DIAMETER TEST, NUMBER COUNTS. - FLUIDS RELEVANT IN COSMOLOGY: EQUATION OF STATE AND DENSITY EVOLUTION. Cosmological constant. - THE EQUIVALENCE EPOCH. - THERMAL HISTORY OF THE UNIVERSE: DECOUPLING. RECOMBINATION. - MATTER/ANTIMATTER AND THE BARYON ASYMMETRY. - PLANCK EPOCH AND QUANTUM GRAVITY. - HORIZON PARADOX. FLATNESS PARADOX. INFLATIONARY SOLUTION. COSMIC INFLATION. - DARK MATTER. - A BRIEF HISTORY OF THE UNIVERSE. HADRONIC EPOCH. LEPTONIC EPOCH. RADIATIVE EPOCH. - NEUTRINO DECOUPLING. - COSMOLOGICAL NUCLEOSYNTHESIS. MATTER EPOCH. FIRST OBJECTS. RE-IONIZATION. - INHOMOGENEITY AND ANISOTROPY. JEANS GRAVITATIONAL INSTABILITY AND THE GROWTH OF COSMIC STRUCTURES Carroll S. Spaceitme Geometry [Pearson 2003]
Coles P., Lucchin F. Cosmology [Wiley 2000] Kolb E., Turner M. The eraly Universe [Addison Wesley 1990] |
6 | FIS/05 | 48 | - | - | - | Core compulsory activities | ITA | ||||||||||||||||||
|
Course | Credits | Scientific Disciplinary Sector Code | Contact Hours | Exercise Hours | Laboratory Hours | Personal Study Hours | Type of Activity | Language | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20401859 -
SUBNUCLEAR PHYSICS LABORATORY
(objectives)
The course lesson has been designed with an emphasis on laboratory activities. It consists of a series of lessons which are devoted to basic concepts on detectors, trigger and daq systems for High Energy Physics. The laboratory activity is based on the realisation of a “small-size” apparatus for the measurement of the mu meson decay.
-
MARI STEFANO MARIA
(syllabus)
COURSE CONTENT
(reference books)
Lessons (2CFU): Introduction to particle detectors (scintillators, gaseous chambers, solid state) Introduction to electronic devices for particle physics Basic software development for DAQ system and data analysis Lab Activity (6CFU): Measurement of the Muon life W.R. Leo - Techniques for Nuclear and Particle Physics Experiment - Springer-Verlag
W. Blum, L. Roland - Particle Detection with Drift Chambers - Springer-Verlag T. Ferbel - Experimental Techniques in High-Energy Nuclear and Particle Physics F. Sauli - Principles of operation of multiwire proportional and drift chambers
-
MARTELLINI Cristina
(syllabus)
COURSE CONTENT
(reference books)
Lessons (2CFU): Introduction to particle detectors (scintillators, gaseous chambers, solid state) Introduction to electronic devices for particle physics Basic software development for DAQ system and data analysis Lab Activity (6CFU): Measurement of the Muon life W.R. Leo - Techniques for Nuclear and Particle Physics Experiment - Springer-Verlag
W. Blum, L. Roland - Particle Detection with Drift Chambers - Springer-Verlag T. Ferbel - Experimental Techniques in High-Energy Nuclear and Particle Physics F. Sauli - Principles of operation of multiwire proportional and drift chambers
-
ORESTANO DOMIZIA
(syllabus)
PROGRAM OF LESSONS IN THE CLASSROOM (EQUIVALENT TO APPROXIMATELY 2
(reference books)
CFU) INTRODUCTORY NOTES ON PARTICLE DETECTORS - PHYSICS OF THE DETECTORS USED IN THE LABORATORY ACTIVITY (PLASTIC SPARKLERS, LIQUID SPARKLERS, DETECTORS A GAS, ...) - NOTES ON ELECTRONIC DEVICES REQUIRED FOR READING THE DETECTORS, FOR THE TRIGGER AND IL SYSTEM DATA ACQUISITION SYSTEM - CALLS TO PROGRAMMING - STATISTICAL CALLS FOR THE ANALYSIS DATA. PROGRAM OF THE ACTIVITY IN THE LABORATORY (EQUIVALENT A ABOUT 6-7 CFU) • ESTIMATE OF THE RESPONSE OF THE DETECTORS USED - VERIFICATION OF THE MEASURED SIGNAL - SETTING OF THE DETECTORS • SET UP OF THE APPARATUS - TRIGGER TRAINING • SET UP OF THE DATA ACQUISITION AND DEVELOPMENT SYSTEM OF ANALYSIS SOFTWARE • MEASUREMENT OF THE PROPOSED GREATNESS (VITA MEDIA DEL MESONE MU AND RELATED QUANTITIES, SPECTRUM OF THE ELECTRON OF THE DECAY OF THE MU, SPECTRUM OF HARD COSMIC RAYS, ...) THE STUDENT IS CALLED TO PERFORM A PART ONLY OF THE EXPERIMENTAL ACTIVITY PROPOSED SO THAT IT MAY COMPARE DIRECTLY WITH THE ISSUES OF LABORATORY. THE FINAL MEASURE WILL BE CARRIED OUT IN THE GROUP TESTI CONSIGLIATI:
W.R. Leo - Techniques for Nuclear and Particle Physics Experiment - Springer-Verlag W. Blum, L. Roland - Particle Detection with Drift Chambers - Springer-Verlag T. Ferbel - Experimental Techniques in High-Energy Nuclear and Particle Physics F. Sauli - Principles of operation of multiwire proportional and drift chambers |
8 | FIS/04 | 28 | - | 54 | - | Core compulsory activities | ITA | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Course | Credits | Scientific Disciplinary Sector Code | Contact Hours | Exercise Hours | Laboratory Hours | Personal Study Hours | Type of Activity | Language | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20402228 -
TRAINING
|
6 | - | - | - | - | Other activities | ITA | |||||||||||||||||||
20410392 -
Lingua inglese
|
4 | - | - | - | - | Other activities | ITA | |||||||||||||||||||
20401594 -
FINAL EXAM
|
30 | - | - | - | - | Final examination and foreign language test | ITA | |||||||||||||||||||
|
Course | Credits | Scientific Disciplinary Sector Code | Contact Hours | Exercise Hours | Laboratory Hours | Personal Study Hours | Type of Activity | Language | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20401904 -
THEORETICAL PHYSICS I
(objectives)
To study classical electrodynamics in detail, to provide the elements of relativistic quantum mechanics. Provide the basics of field theory and QED
|
8 | FIS/02 | 46 | 22 | - | - | Core compulsory activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20402209 -
NUCLEAR AND SUBNUCLEAR PHYSICS
(objectives)
To show the basic concepts of elementary particles and the phenomenology of fundamental interactions.
|
8 | FIS/04 | 54 | 24 | - | - | Core compulsory activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20402210 -
CONDENSED MATTER PHYSICS
(objectives)
The course aims to apply the methods of mechanics quantum to the description of the fundamental properties of solid matter.
|
8 | FIS/03 | 60 | 24 | - | - | Core compulsory activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20402211 -
COMPLEMENTS OF MATHEMATICAL METHODS FOR PHYSICS
(objectives)
The aim of the course is to learn the basic tools to deal with Lie algebras and their representations and to acquire computer calculation techniques,both for symbolic and for numerical calculations. Topics of the course
will be dealt with using either Wolfram Language and Python or alternative computer languages preferred by the student.
-
FRANCESCHINI ROBERTO
(syllabus)
Group Theory (CA)
(reference books)
SU(2) and SU(3) The Killing Form Simple Lie Algebras Representations Simple Roots and the Cartan Matrix The Classical Lie Algebras The Exceptional Lie Algebras Casimir Operators and Freudenthal’s Formula The Weyl Group Weyl’s Dimension Formula Reducing Product Representations Subalgebras Branching Rules Numerical Methods Refresh on Probability and Random variables Refresh on Measurement, uncertainty and its propagation Refresh on Curve-fitting, least-squares, optimization Classical numerical integration, speed of convergence Integration MC (Mean, variance) Sampling Strategies Applications Propagation of uncertainties Generation according to a distribution Sections of the textbooks for each topic are listed on http://webusers.fis.uniroma3.it/franceschini/cmm.html Robert Cahn - Semi-Simple Lie Algebras and Their Representations - Dover Publications 2014 (available at Roma TRE BAST Sede Centrale and from the author's web page ) Weinzierl, S. - Introduction to Monte Carlo methods arXiv:hep-ph/0006269 Taylor, J. - An introduction to error analysis - University Science Books Sausalito, California Disponibile nella biblioteca Scientifica di Roma Tre Dubi, A. - Monte Carlo applications in systems engineering - Wiley Disponibile nella biblioteca Scientifica di Roma Tre readings supplied during class and listed on the web http://webusers.fis.uniroma3.it/franceschini/cmm.html |
6 | FIS/02 | 34 | 18 | - | - | Core compulsory activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Course | Credits | Scientific Disciplinary Sector Code | Contact Hours | Exercise Hours | Laboratory Hours | Personal Study Hours | Type of Activity | Language | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20402213 -
ELEMENTS OF EARTH PHYSICS AND OF ENVIRONMENT
(objectives)
The course is structured on the basic concepts of Solid and Fluid Earth Physics in order to provide the student with a coherent and updated picture of this discipline, both from a theoretical and an experimental point of view
|
6 | FIS/06 | 48 | - | - | - | Related or supplementary learning activities | ITA | ||||||||||||||||||
20402218 -
THEORETICAL PHYSICS II
(objectives)
Provide the fundamental notions about radiative corrections in QED, about renormalization and about the electroweak Standard Model. To acquire skills on the phenomenology of subnuclear physics at the energies of current colliders (LHC).
-
DEGRASSI GIUSEPPE
(syllabus)
Feynman diagrams. Tree-level processes. Discrete symmetry
(reference books)
Feynman diagrams and cross-sections. Bhabha and Compton scattering. Gauge invariance. Chiral and Majorana representations for the matrices. Parity, charge conjugation and time-reversal. Radiative Corrections Divergent behavior of an integral. Primitively divergent diagrams. Pauli-Villars regularization. Coupling, mass and wave-function renormalization in a scalar theory. QED. Ward identity. Dimensional regularization. Vacuum polarization and Lamb shift. Running of the coupling constant. Bremsstrahlung, infrared divergencies and their cancellation between real and virtual contributions. Non Abelian Gauge Theories Yang-Mills Lagrangian. QCD. Non Abelian gauge invariance. Running of the strong coupling. Asymtotic freedom. Weak Interactions. Fermi and IVB theories. W propagator. mu decay. Standard Model Lagrangian. Weak angle. Spontaneous symmetry breaking and Higgs mechanism. Mass of the intermediate vector bosons. CKM matrix F. Mandl, G. Shaw: Quantum Field Theory, ed. John Wiley & Sons;
M. Peskin, D. Shroeder: An Introduction to Quantum Field Theory, ed. Frontiers in Physics |
6 | FIS/02 | 34 | 18 | - | - | Core compulsory activities | ITA | ||||||||||||||||||
20402219 -
ELEMENTARY PARTICLE PHYSICS (MOD. A)
(objectives)
To acquire the fundamental knowledge on the phenomenological bases of the Standard Model of Elementary Particles and on the principles of particle detection
|
6 | FIS/04 | 48 | - | - | - | Related or supplementary learning activities | ITA | ||||||||||||||||||
20402258 -
RELATIVITY THEORY
(objectives)
To make the student familiar with the conceptual assumptions of the Theory of General Relativity, both as a geometric theory of space-time and by emphasizing analogies and differences with field theories based on local symmetries that describe the interactions between elementary particles. Illustrate the essential elements of differential geometry necessary to formalize the proposed concepts. Introduce the student to extensions of the theory of interest for current theoretical research.
-
ARCADI GIORGIO
(syllabus)
Introductory notions
(reference books)
Recap of Special Relativity. Lorentz transformations in Minkowski’s space. Vectors in Minkowski’s space. Basis of the tangent space. Cotangents space and dual vectors in Minkowski’s space. Basis of cotangent space. Lorentz transformations of vectors and dual vectors. Tensors in Minkowski’s space. Properties of vectors, dual vectors and tensors in Minkowski’s space. Definition of symmetric and antisymmetric tensor. Symmetrization and antisymmetrization of a generic tensor. Metric in Minkowski’s space: definition and properties. Operations related to the metric: scalar products, rising and lowering indices of a tensor, contractions and trace of a tensor. Equivalence between inertial and gravitational mass. Weak Equivalence Principle (WEP), Einstein’s equivalence Principle (EEP). Basic notions of differential geometry Introduction to the notion of manifold. Definition and properties of maps. Injective and suriective maps (some examples included). Composition of charts. Invertible charts. Definition of diffeomorphism. Definition of chart (or coordinate system). Definition of atlas. Definition of manifold. Product of manifolds. Formal coordinate independent definition of vector. Demonstration that the dimension of the tangent space coincides with the one of the corresponding manifold. Basis (or coordinate system) of the tangent space. Coordinate transformations. Coordinate transformations of the components of a vector. Definition and properties of the tangent field. Definition of one parameter group of diffeomorphisms. Definition of integral curves. Commutator of two vectors. Coordinate independent definition of dual vector (one-form). Cotangent space and corresponding basis. Coordinate transformation of the components of a one-form. Coordinate independent definition of tensor. Demonstration that the partial derivative of a tensor is not a tensor. Metric: signature and canonical form. Tensor densities. Differential forms. Wedge product. Exterior derivative. Closed and exact form. Poincarre Lemma (statement only). Hodge duality. Maxwell equations expressed in term of exterior derivative and hodge duality (only small reference). Integration over a manifold: volume element in terms of the determinant of the metric. Maps between manifold: pullback and pushforward. Pullback and pushforward associated to diffeomorphisms. Equivalence between diffeomorphisms and coordinate transformations. Vector field associated to diffeomorphisms. Lie Derivative: definition and general properties. Action of Lie’s derivative on scalars, vectors, one-forms and tensors. General Relativity as diffeomorphism invariant theory. Analogy between gauge transformations and diffeomorphisms. Symmetries. Notion of submanifold. Immersed and embedded submanifolds. Notion of hypersurface and boundary of a manifold. Integration on manifolds again: differential form as generic volume element. Orientation and orientable manifold. Covering of the manifold through partition of unity. Integration of p-forms over submanifold. Demonstrations that the volume element can be expressed in terms of the determinant of the metric. Stokes theorem (no demonstration). Connection, Covariant Derivative, Curvature Lie’s Algebra and Lie’s group. Action from the right and from the left. Left- and right-invariant vectors. Structure constants. Examples of Lie groups. Maurer-Cartan forms. Maurer-Cartan’s equations. Action of Lie Groups on manifolds. Definition of free, effective and transitive action. Orbit and stabilizer. Algebric definition of connection and covariant derivative. General properties of covariant derivatives. Action of coordinate transformations on the connection. Demonstration that the difference of Christoffel coefficients associated to two different connections transforms as a tensor; torsion tensor, torsion-free and metric connection. Demonstrations that for any given metric exists a connection (metric connections) for which the covariant derivative of the metric is zero. Formal construction of the covariant derivative from the notion of parallel transport (qualitative introduction). Fiber bundle. Trivial and locally trivializable bundles. Local trivilizations. Maps between fiber bundles (notions). Defintion of bundle atlas, G-atlas, G-structure. Fiber Bundle with structure group G. Definition of Principal Bundle. Definition of section of a bundle. Vector bundle and bundle of basis, definition and general properties. Relation between principle bundle, vectorbundle and bundle of frames (definition of associated vector bundle to a principal bundle. Construction of the covariante derivative on a vectorbundle (only the knowledge of the fundamental logical steps is required for the exam). Curvature tensor as 2-form on a fiber bundle. Geometrical interpretation of the curvature. Bianchi identity. Fiber metric. Ortogonal basis. Connections and gauge theories: electromagnetism as simple example. Soldering form. Choice of the gauge. Ortonormal and metric gauge. Levi-Civita connection; Riemann’s tensor : definition and properties. Ricci’s tensor and scalar, Weyl’s tensor. Globally and locally inertial coordinates. Einstein’s theory of gravity Minimal coupling. Particle in a gravitational field: affine parameter, self-parallel curves. Geodesic’s equations. Geodesic deviation. Derivation of the Einstein’s equations from Newton’s limit. Lagrangian derivations of Einstein’s equations. General considerations on the structure of Einstein’s equations. Choice of the gauge. Energy conditions. Symmetries and Killing vectors: version of Noether’s theorem from general relativity. Maximal number of linearly independent Killing vectors on a manifold. Homogenous and isotropic manifold. Spaces at constant curvature. Metric in spaces at constant curvature. Notable solutions of Einstein’s equations Static spherically symmetric spacetimes. Determination of Schwarzschild’s metric. Cosmological solution. Spatially homogeneous and isotropic spacetime. Frieman’s Robertson-Walker metric. Friedman’s equations. Coordinate singularities. Case of study: Schwarzschild radius. Rindler metric. Kruskal coordinates. Black hole solution. Perturbation around a background metric. Case of study:perturbation of flat metric. Degrees of freedom. Linearized Einstein’s equations. Choice of the gauge. Linearized Einstein’s equations in vacuum: gravitational waves. Solutions in presence of the source (only few words). Advanced concepts Conformal transformations. Cotton’s tensor. Conformally flat metric. Demonstration of the theorem: a metric is conformally flat if and only if Weyl (Cotton) tensor is null. Conformal group. Conformal Killing vectors. Alternative theories of gravity. Scalar-tensor theories. Jordan and Einstein’s frames. 1. S. Carrol Space time and Geometry: An Introduction to
General Relativity (Addison Wesley, 2004); 2. R. Wald General Relativity (The Chicago Press, 1984); 3. B. Schutz A First Course in General Relativity (Cambridge Press) 4. B. Schutz Geometrical Methods of Mathematical Physics (Cambridge Press) 5. S. Weinberg Gravitation and Cosmology-principles and application of the general theory of relativity (John Weiley & Sons, 1972); 6. people.sissa.it/~percacci/lectures/general/index.html |
6 | FIS/02 | 48 | - | - | - | Related or supplementary learning activities | ITA | ||||||||||||||||||
20410086 -
ELEMENTI DI RELATIVITA' GENERALE, ASTROFISICA E COSMOLOGIA
(objectives)
The course aims to provide students with the basic concepts of general relativity and its applications to physical systems, with particular reference to compact objects (black holes), gravitational waves and the universe
-
BRANCHINI ENZO FRANCO
(syllabus)
- SPECIAL RELATIVITY. VECTORS AND TENSORS. METRIC TENSOR. ENERGY-MOMENTUM TENSOR.
(reference books)
- GENERAL RELATIVITY. UNDERLYING CONCEPTS. AFFINE CONNECTION. PARALLEL TRANSPORT. GEODESICS EQUATION. - SYMMETRY AND KILLING VECTORS. RIEMANN TENSOR. SINGULARITY. - EINSTEIN EQUATIONS. - SCHWARZSCHILD METRIC. - ORBITS IN THE SCHWARZSCHILD METRIC. MERCURY’S ORBIT. - NON ROTATING BLACK HOLES. EVENT HORIZON AND THE CHOICE OF COORDINATES. - KERR METRIC. ROTATING BLACK HOLES AND FRAME DRAGGING. - INTRODUCTION TO GRAVITATIONAL WAVES. - THE COSMOLOGICAL PRINCIPLE AND ROBERTSON-WALKER METRIC. - FRIEDMAN EQUATIONS. NEWTONIAN LIMIT. - COSMOLOGICAL REDSHIFT. COSMOLOGICAL HORIZONS. CO-MOVING COORDINATES AND PROPER DISTANCE. - LUMINOSITY DISTANCE. ANGULAR DIAMETER DISTANCE. - OBSERVATIONAL TESTS: HUBBLE TEST, ANGULAR DIAMETER TEST, NUMBER COUNTS. - FLUIDS RELEVANT IN COSMOLOGY: EQUATION OF STATE AND DENSITY EVOLUTION. Cosmological constant. - THE EQUIVALENCE EPOCH. - THERMAL HISTORY OF THE UNIVERSE: DECOUPLING. RECOMBINATION. - MATTER/ANTIMATTER AND THE BARYON ASYMMETRY. - PLANCK EPOCH AND QUANTUM GRAVITY. - HORIZON PARADOX. FLATNESS PARADOX. INFLATIONARY SOLUTION. COSMIC INFLATION. - DARK MATTER. - A BRIEF HISTORY OF THE UNIVERSE. HADRONIC EPOCH. LEPTONIC EPOCH. RADIATIVE EPOCH. - NEUTRINO DECOUPLING. - COSMOLOGICAL NUCLEOSYNTHESIS. MATTER EPOCH. FIRST OBJECTS. RE-IONIZATION. - INHOMOGENEITY AND ANISOTROPY. JEANS GRAVITATIONAL INSTABILITY AND THE GROWTH OF COSMIC STRUCTURES Carroll S. Spaceitme Geometry [Pearson 2003]
Coles P., Lucchin F. Cosmology [Wiley 2000] Kolb E., Turner M. The eraly Universe [Addison Wesley 1990] |
6 | FIS/05 | 48 | - | - | - | Core compulsory activities | ITA | ||||||||||||||||||
|
Course | Credits | Scientific Disciplinary Sector Code | Contact Hours | Exercise Hours | Laboratory Hours | Personal Study Hours | Type of Activity | Language | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20401139 -
FUNDAMENTAL INTERACTIONS PHYSICS
(objectives)
To present Physics of Fundamental Interactions, within the Standard Model, and the formalism of Quantum Field Theory underlying it
-
TARANTINO CECILIA
(syllabus)
Introductive Lectures:
(reference books)
Green Functions, Feynman Diagrams, Exponentiation of disconnected diagrams, IN and OUT states, S-Matrix, S-Matrix in terms of Feynman diagrams, Kaellen-Lehmann Spectral Representation, LSZ Reduction Formula, Optical Theorem. Renormalization: Superficial Divergence Degree of Diagrams, Renormalized Perturbation Theory, Callan-Symanzik Equation, Beta and Gamma Functions, Running coupling, Leading Logarithm Resummation. Path Integral Method: Introduction to Path Integral Formalism, Path Integral for a Field Theory (Path Int.for a scalar field thoery), Green functions in terms of Path Int., Feynman rules from Path Int., Generating Functional, QED Quantization (Faddeev-Popov Method), Dirac Field Quantization, Quantization of Non-abelian Gauge Theories, Ghosts. Michael E. Peskin, Daniel V. Schroeder "An Introduction to Quantum Field Theory";
Franz Mandl, Graham Shaw "Quantum Field Theory". |
8 | FIS/02 | 48 | - | - | - | Core compulsory activities | ITA | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Course | Credits | Scientific Disciplinary Sector Code | Contact Hours | Exercise Hours | Laboratory Hours | Personal Study Hours | Type of Activity | Language | |||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20402228 -
TRAINING
|
6 | - | - | - | - | Other activities | ITA | ||||||||||||||||||||||||||||
20410392 -
Lingua inglese
|
4 | - | - | - | - | Other activities | ITA | ||||||||||||||||||||||||||||
20401594 -
FINAL EXAM
|
30 | - | - | - | - | Final examination and foreign language test | ITA | ||||||||||||||||||||||||||||
|
Course | Credits | Scientific Disciplinary Sector Code | Contact Hours | Exercise Hours | Laboratory Hours | Personal Study Hours | Type of Activity | Language | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20401904 -
THEORETICAL PHYSICS I
(objectives)
To study classical electrodynamics in detail, to provide the elements of relativistic quantum mechanics. Provide the basics of field theory and QED
|
8 | FIS/02 | 46 | 22 | - | - | Core compulsory activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20402209 -
NUCLEAR AND SUBNUCLEAR PHYSICS
(objectives)
To show the basic concepts of elementary particles and the phenomenology of fundamental interactions.
|
8 | FIS/04 | 54 | 24 | - | - | Core compulsory activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20402210 -
CONDENSED MATTER PHYSICS
(objectives)
The course aims to apply the methods of mechanics quantum to the description of the fundamental properties of solid matter.
|
8 | FIS/03 | 60 | 24 | - | - | Core compulsory activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20402211 -
COMPLEMENTS OF MATHEMATICAL METHODS FOR PHYSICS
(objectives)
The aim of the course is to learn the basic tools to deal with Lie algebras and their representations and to acquire computer calculation techniques,both for symbolic and for numerical calculations. Topics of the course
will be dealt with using either Wolfram Language and Python or alternative computer languages preferred by the student.
-
FRANCESCHINI ROBERTO
(syllabus)
Group Theory (CA)
(reference books)
SU(2) and SU(3) The Killing Form Simple Lie Algebras Representations Simple Roots and the Cartan Matrix The Classical Lie Algebras The Exceptional Lie Algebras Casimir Operators and Freudenthal’s Formula The Weyl Group Weyl’s Dimension Formula Reducing Product Representations Subalgebras Branching Rules Numerical Methods Refresh on Probability and Random variables Refresh on Measurement, uncertainty and its propagation Refresh on Curve-fitting, least-squares, optimization Classical numerical integration, speed of convergence Integration MC (Mean, variance) Sampling Strategies Applications Propagation of uncertainties Generation according to a distribution Sections of the textbooks for each topic are listed on http://webusers.fis.uniroma3.it/franceschini/cmm.html Robert Cahn - Semi-Simple Lie Algebras and Their Representations - Dover Publications 2014 (available at Roma TRE BAST Sede Centrale and from the author's web page ) Weinzierl, S. - Introduction to Monte Carlo methods arXiv:hep-ph/0006269 Taylor, J. - An introduction to error analysis - University Science Books Sausalito, California Disponibile nella biblioteca Scientifica di Roma Tre Dubi, A. - Monte Carlo applications in systems engineering - Wiley Disponibile nella biblioteca Scientifica di Roma Tre readings supplied during class and listed on the web http://webusers.fis.uniroma3.it/franceschini/cmm.html |
6 | FIS/02 | 34 | 18 | - | - | Core compulsory activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Course | Credits | Scientific Disciplinary Sector Code | Contact Hours | Exercise Hours | Laboratory Hours | Personal Study Hours | Type of Activity | Language | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20402213 -
ELEMENTS OF EARTH PHYSICS AND OF ENVIRONMENT
(objectives)
The course is structured on the basic concepts of Solid and Fluid Earth Physics in order to provide the student with a coherent and updated picture of this discipline, both from a theoretical and an experimental point of view
|
6 | FIS/06 | 48 | - | - | - | Related or supplementary learning activities | ITA | ||||||||||||||||||
20402218 -
THEORETICAL PHYSICS II
(objectives)
Provide the fundamental notions about radiative corrections in QED, about renormalization and about the electroweak Standard Model. To acquire skills on the phenomenology of subnuclear physics at the energies of current colliders (LHC).
-
DEGRASSI GIUSEPPE
(syllabus)
Feynman diagrams. Tree-level processes. Discrete symmetry
(reference books)
Feynman diagrams and cross-sections. Bhabha and Compton scattering. Gauge invariance. Chiral and Majorana representations for the matrices. Parity, charge conjugation and time-reversal. Radiative Corrections Divergent behavior of an integral. Primitively divergent diagrams. Pauli-Villars regularization. Coupling, mass and wave-function renormalization in a scalar theory. QED. Ward identity. Dimensional regularization. Vacuum polarization and Lamb shift. Running of the coupling constant. Bremsstrahlung, infrared divergencies and their cancellation between real and virtual contributions. Non Abelian Gauge Theories Yang-Mills Lagrangian. QCD. Non Abelian gauge invariance. Running of the strong coupling. Asymtotic freedom. Weak Interactions. Fermi and IVB theories. W propagator. mu decay. Standard Model Lagrangian. Weak angle. Spontaneous symmetry breaking and Higgs mechanism. Mass of the intermediate vector bosons. CKM matrix F. Mandl, G. Shaw: Quantum Field Theory, ed. John Wiley & Sons;
M. Peskin, D. Shroeder: An Introduction to Quantum Field Theory, ed. Frontiers in Physics |
6 | FIS/02 | 34 | 18 | - | - | Core compulsory activities | ITA | ||||||||||||||||||
20402232 -
Quantum Theory of Matter
(objectives)
The course intends to offer an introduction to the methods of field theory applied to the study of many-body systems of Matter Physics, in particular the theoretical study of quantum phenomena that characterize matter at low temperatures such as superfluidity and superconductivity is developed
-
Derived from
20410022 TEORIA QUANTISTICA DELLA MATERIA MOD. A in Fisica LM-17 ROVERE MAURO
(syllabus)
Ist Part
(reference books)
1 - Homogeneous electron gas in a neutralizing background (jellium model). Zero order approximation: Sommerfeld theory. Coulombian interaction as perturbation. Hartree-Fock theory for electron gas. Distribution Definition of correlation energy. 2- Second quantization: Fock space for bosons and fermions. Creation and destruction operators. Field operators. Operators in second quantization. The jellium model in second quantization, first order perturbation and comparison with the Hartree-Fock results. Beyond the first order approximation the many body perturbative theory. 3 - The Green Functions for the Electron Gas. Green functions for non-interacting electrons. Lehmann representation. Perturbative development for Green's functions. Dyson equation. Self-energy. 4 - Polarization propagator. Polarization diagrams. Proper polarization. Correlation energy in terms of polarization propagator. Random phase approximation (RPA). Dielectric function in RPA. High-density limit, Thomas-Fermi screen. Limit to large wavelengths, plasma oscillations. 5- Introduction to the Density Functional theory for the solid state physics. 2nd Part 1 - The phenomenon of superfluity. The phase diagram of He4. The superfluid phase of liquid helium. The theory of the two fluids. Landau's theory: critical speed, rotons and phonons. Bogoliubov's theory of interacting bosons. Hydrodynamics and vorticity. Vortices as liquid helium excitations. Recent achievements of Bose-Einstein condensation. 2 - The phenomenon of superconductivity. Zero resistance, Meissner Effect, Critical Magnetic Field, Specific heat. Analogies with the phenomenon of superfluidity. London equation. Thermodynamic considerations. Superconductors of the first type and of the second type. 3 - Microscopic theory of superconductivity. Electron-phonon interaction. Attractive interaction between electrons. Cooper pairs. Bardeen-Cooper-Schrieffer's theory (BCS): fundamental state, definition of energy gap. Excited states. Calculation at finite temperature. Quantization of magnetic flux. 4 - Phenomenological theory of Ginzburg-Landau. Landau theory of phase transitions. Free energy of superconductors. Ginzburg-Landau equations and relation with the London equation. 5 - Symmetry breaking and transition from normal to superconducting state. A.L.FETTER, J.D.WALECKA "QUANTUM THEORY OF MANY PARTICLES"
G.GROSSO, G.PASTORI-PARRAVICINI "SOLID STATE PHYSICS" |
6 | FIS/03 | 60 | - | - | - | Related or supplementary learning activities | ITA | ||||||||||||||||||
20410086 -
ELEMENTI DI RELATIVITA' GENERALE, ASTROFISICA E COSMOLOGIA
(objectives)
The course aims to provide students with the basic concepts of general relativity and its applications to physical systems, with particular reference to compact objects (black holes), gravitational waves and the universe
-
BRANCHINI ENZO FRANCO
(syllabus)
- SPECIAL RELATIVITY. VECTORS AND TENSORS. METRIC TENSOR. ENERGY-MOMENTUM TENSOR.
(reference books)
- GENERAL RELATIVITY. UNDERLYING CONCEPTS. AFFINE CONNECTION. PARALLEL TRANSPORT. GEODESICS EQUATION. - SYMMETRY AND KILLING VECTORS. RIEMANN TENSOR. SINGULARITY. - EINSTEIN EQUATIONS. - SCHWARZSCHILD METRIC. - ORBITS IN THE SCHWARZSCHILD METRIC. MERCURY’S ORBIT. - NON ROTATING BLACK HOLES. EVENT HORIZON AND THE CHOICE OF COORDINATES. - KERR METRIC. ROTATING BLACK HOLES AND FRAME DRAGGING. - INTRODUCTION TO GRAVITATIONAL WAVES. - THE COSMOLOGICAL PRINCIPLE AND ROBERTSON-WALKER METRIC. - FRIEDMAN EQUATIONS. NEWTONIAN LIMIT. - COSMOLOGICAL REDSHIFT. COSMOLOGICAL HORIZONS. CO-MOVING COORDINATES AND PROPER DISTANCE. - LUMINOSITY DISTANCE. ANGULAR DIAMETER DISTANCE. - OBSERVATIONAL TESTS: HUBBLE TEST, ANGULAR DIAMETER TEST, NUMBER COUNTS. - FLUIDS RELEVANT IN COSMOLOGY: EQUATION OF STATE AND DENSITY EVOLUTION. Cosmological constant. - THE EQUIVALENCE EPOCH. - THERMAL HISTORY OF THE UNIVERSE: DECOUPLING. RECOMBINATION. - MATTER/ANTIMATTER AND THE BARYON ASYMMETRY. - PLANCK EPOCH AND QUANTUM GRAVITY. - HORIZON PARADOX. FLATNESS PARADOX. INFLATIONARY SOLUTION. COSMIC INFLATION. - DARK MATTER. - A BRIEF HISTORY OF THE UNIVERSE. HADRONIC EPOCH. LEPTONIC EPOCH. RADIATIVE EPOCH. - NEUTRINO DECOUPLING. - COSMOLOGICAL NUCLEOSYNTHESIS. MATTER EPOCH. FIRST OBJECTS. RE-IONIZATION. - INHOMOGENEITY AND ANISOTROPY. JEANS GRAVITATIONAL INSTABILITY AND THE GROWTH OF COSMIC STRUCTURES Carroll S. Spaceitme Geometry [Pearson 2003]
Coles P., Lucchin F. Cosmology [Wiley 2000] Kolb E., Turner M. The eraly Universe [Addison Wesley 1990] |
6 | FIS/05 | 48 | - | - | - | Core compulsory activities | ITA | ||||||||||||||||||
20402221 -
COMPLEMENTS OF CONDENSED MATTER PHYSICS
(objectives)
Give the student a thorough understanding of the structural and electronic properties of solids, their transport properties, the response to electromagnetic fields
-
Derived from
20410020 COMPLEMENTI DI FISICA DELLA MATERIA CONDENSATA in Fisica LM-17 DE SETA MONICA
(syllabus)
Electronic properties of selected crystals
(reference books)
Reminds on band structure calculation methods. Electronic structure of molecular and ionic solids. Band structure of II-VI, III-V systems and of covalent crystals with diamond structure. Impurity levels in doped semiconductors. Internal energy, pressure and compressibility of an electron gas. Band structures and Fermi surfaces of selected metals. Transport properties: The Drude Model. Semiclassical Equations of transport. Boltzmann equation. Relaxation time approximation. Static and dynamic electrical conductivity in metals. Thermoeletrictic power and thermal conductivity. Transport in homogeneous and doped semiconductors. Drift and diffusion currents. Generation and recombination of electron-hole pairs in semiconductors. Continuity equation. Recombination times and diffusion length. Current voltage characteristics of the p-n junction. Metal-semiconductor junction. Electron phonon interaction. Matrix elements and selection rules. Optical properties of solids Maxwell Equations in solids. Complex Dielectric Constant. Absorption and reflection coefficients. Kramers Kronig Relations. The Drude theory of the optical properties of metals. Optical properties of semiconductors and insulators. Direct interband transitions and critical points. Optical constants of Ge and Graphite. Absorption from impurity levels. Exciton effects. Indirect phonon-assisted transitions. Two-photon absorption. Raman Scattering. Optical phonon absorption. Electron gas in magnetic fields Energy levels and density of states of a free electron gas in a magnetic fields. Orbital magnetic susceptibility and Haas-van Alphen effect. Magneto-resistivity and classical Hall effect. Phenomenology of the quantum Hall effect. Magnetic properties of matter. Quantum mechanical treatment of magnetic suscectibility. Pauli paramagnetism. Magnetic suscectibility of closed-shell systems. Permanent magnetic dipoles in atoms and ions with partially filled shells. Paramagnetism of localized magnetic moments. Curie and Van Vleck paramagnetism. Magnetic ordering in crystals. Mean field theory of ferromagnetism: Weiss model. Curie-Weiss law. Critical temperature. Ferromagnetism, exchange interaction and Heisemberg model. Microscopic origin of the coupling between localized magnetic moments. Dipolar interaction and magnetic domains. Ashcroft-Mermin: "Solid State Physics"
Grosso-Pastori-Parravicini: "Solid State Physics" |
6 | FIS/03 | 48 | - | - | - | Related or supplementary learning activities | ITA | ||||||||||||||||||
|
Course | Credits | Scientific Disciplinary Sector Code | Contact Hours | Exercise Hours | Laboratory Hours | Personal Study Hours | Type of Activity | Language | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20401425 -
STATISTICAL MECHANICS
(objectives)
This course aims to provide a perspective on the modern developments of Statistical Mechanics. In particular, by starting from the theory of phase transitions and critical phenomena, it is shown how the concepts lying at the basis of the Renormalization Group method emerged. This method is nowadays largely used in several different fields of Statistical Mechanics. Its application to critical phenomena is the classical and paradigmatic example and, as such, is illustrated in detail in the course.
-
RAIMONDI ROBERTO
(syllabus)
I unit (6CFU)
(reference books)
Brief mention of main concepts of thermodynamics. The thermodynamic potentials. Phase transitions and the van der Waals equation for the real gases. Fluctuations and thermodynamic stability. Quantum theory of linear response. Phase transitions and thermodynamic limit. Microscopic derivation of the van der Waals equation and its behavior at the critical point. The Curie-Weiss theory of the ferromagnetic transition. The Landau theory of the second order phase transitions. The Ginzburg criterion for the validity of the mean-field approach. The role of symmetry and of dimensionality in the phase transitions: the Mermin-Wagner theorem. The Kadanoff-Wilson transformation for the renormalization group. Evaluation of the fixed points in the Landau-Wilson model and epsilon expansion. II unit (2 CFU) The standard model of metals: disordered electron systems. The weak localization concept and the metal-insulator transition. Superconductivity. Statistical Mechanics and Applications in Condensed Matter
by Carlo Di Castro and Roberto Raimondi Cambridge University Press 2015 ISBN: 9781107039407 |
8 | FIS/02 | 64 | - | - | - | Core compulsory activities | ITA | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Course | Credits | Scientific Disciplinary Sector Code | Contact Hours | Exercise Hours | Laboratory Hours | Personal Study Hours | Type of Activity | Language | |||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20402228 -
TRAINING
|
6 | - | - | - | - | Other activities | ITA | ||||||||||||||||||||||||||||
20410392 -
Lingua inglese
|
4 | - | - | - | - | Other activities | ITA | ||||||||||||||||||||||||||||
20401594 -
FINAL EXAM
|
30 | - | - | - | - | Final examination and foreign language test | ITA | ||||||||||||||||||||||||||||
|
Course | Credits | Scientific Disciplinary Sector Code | Contact Hours | Exercise Hours | Laboratory Hours | Personal Study Hours | Type of Activity | Language | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20401904 -
THEORETICAL PHYSICS I
(objectives)
To study classical electrodynamics in detail, to provide the elements of relativistic quantum mechanics. Provide the basics of field theory and QED
|
8 | FIS/02 | 46 | 22 | - | - | Related or supplementary learning activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20402209 -
NUCLEAR AND SUBNUCLEAR PHYSICS
(objectives)
To show the basic concepts of elementary particles and the phenomenology of fundamental interactions.
|
8 | FIS/04 | 54 | 24 | - | - | Core compulsory activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20402210 -
CONDENSED MATTER PHYSICS
(objectives)
The course aims to apply the methods of mechanics quantum to the description of the fundamental properties of solid matter.
|
8 | FIS/03 | 60 | 24 | - | - | Core compulsory activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20402211 -
COMPLEMENTS OF MATHEMATICAL METHODS FOR PHYSICS
(objectives)
The aim of the course is to learn the basic tools to deal with Lie algebras and their representations and to acquire computer calculation techniques,both for symbolic and for numerical calculations. Topics of the course
will be dealt with using either Wolfram Language and Python or alternative computer languages preferred by the student.
-
FRANCESCHINI ROBERTO
(syllabus)
Group Theory (CA)
(reference books)
SU(2) and SU(3) The Killing Form Simple Lie Algebras Representations Simple Roots and the Cartan Matrix The Classical Lie Algebras The Exceptional Lie Algebras Casimir Operators and Freudenthal’s Formula The Weyl Group Weyl’s Dimension Formula Reducing Product Representations Subalgebras Branching Rules Numerical Methods Refresh on Probability and Random variables Refresh on Measurement, uncertainty and its propagation Refresh on Curve-fitting, least-squares, optimization Classical numerical integration, speed of convergence Integration MC (Mean, variance) Sampling Strategies Applications Propagation of uncertainties Generation according to a distribution Sections of the textbooks for each topic are listed on http://webusers.fis.uniroma3.it/franceschini/cmm.html Robert Cahn - Semi-Simple Lie Algebras and Their Representations - Dover Publications 2014 (available at Roma TRE BAST Sede Centrale and from the author's web page ) Weinzierl, S. - Introduction to Monte Carlo methods arXiv:hep-ph/0006269 Taylor, J. - An introduction to error analysis - University Science Books Sausalito, California Disponibile nella biblioteca Scientifica di Roma Tre Dubi, A. - Monte Carlo applications in systems engineering - Wiley Disponibile nella biblioteca Scientifica di Roma Tre readings supplied during class and listed on the web http://webusers.fis.uniroma3.it/franceschini/cmm.html |
6 | FIS/02 | 34 | 18 | - | - | Core compulsory activities | ITA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Course | Credits | Scientific Disciplinary Sector Code | Contact Hours | Exercise Hours | Laboratory Hours | Personal Study Hours | Type of Activity | Language | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20410054 -
Environmental Physics
(objectives)
To provide the fundamental theoretical and experimental knowledge in the field of atmospheric and oceanic fluid dynamics
-
DI SARRA ALCIDE
(syllabus)
The course is designed to provide students with the fundamental information for understanding the interactions between the atmosphere, the ocean, and the earth's surface, the main physical-chemical processes connected, and the impacts on air and sea quality. The course intends to deal with the interconnection and inter / multidisciplinary aspects of the phenomena involved and to provide information on the measurement principles of various properties of the atmosphere and the ocean.
(reference books)
Course program Structure and composition of the atmosphere. Atmospheric dynamic processes. Main gases and trace gases. Particulate matter and clouds. Emissions and chemical reactions in the atmosphere. Chemical reactions relevant to air quality. Planetary limit layer and its evolution. Structure and composition of the ocean. Salinity, temperature, density. Oceanic dynamic processes. Scrambled layer, thermocline. Chemical composition and marine pollutants. Exchanges of energy and matter between atmosphere, ocean, earth. Elements on the hydrological cycle and the carbon cycle. Techniques and methods of measurement of some atmospheric and oceanographic parameters. Hartmann, D.L., Global Physical Climatology. Elsevier, 2016.
Stewart, R. H., Introduction to physical oceanography, 2008. http : / /hdl .handle .net /1969 .1 /160216. Wallace, J.M., e P. V. Hobbs, Atmospheric Science: An Introductory Survey. Academic Press, 2006. |
6 | FIS/07 | 48 | - | - | - | Related or supplementary learning activities | ITA | ||||||||||||||||||
20402213 -
ELEMENTS OF EARTH PHYSICS AND OF ENVIRONMENT
(objectives)
The course is structured on the basic concepts of Solid and Fluid Earth Physics in order to provide the student with a coherent and updated picture of this discipline, both from a theoretical and an experimental point of view
|
6 | FIS/06 | 48 | - | - | - | Core compulsory activities | ITA | ||||||||||||||||||
20410042 -
TERRESTRIAL PHYSICS
(objectives)
The main objectives of the course are three: 1. To develop in the student the conviction of the need for a deep knowledge of Physics for the different applications necessary for understanding the Earth System.2. Give the student a specific knowledge of the physical mechanisms of the interior of the planet. 3. To make the student aware of an interdisciplinary and multidisciplinary approach and the different methods useful for the study of the Earth System
-
PETTINELLI ELENA
(syllabus)
Introduction the Earth Physics course
(reference books)
The Earth in the Solar System The Earth as a Planet Mass, density and inertia moments of the Earth The figure and the Earth gravity Tide and Earth rotation Concepts on physical properties of minerals and rocks History of Earth Magnetism Rocks Magnetism Earth magnetic field Earth internal heat Internal structure of the Earth Stacey, F. D., and Davis, P. M. (2008) Physics of the Earth, Cambridge University Press.
Fowler, C. M. R. (2005). The Solid Earth, Cambridge University Press. |
6 | FIS/06 | 60 | - | - | - | Core compulsory activities | ITA | ||||||||||||||||||
20410047 -
Mechanics of Continuous Media in Physics of the Earth and Environment
(objectives)
Provide the student with the fundamental physical and mathematical tools for describing continuous mechanical systems with particular attention to applications in terrestrial and environmental physics
-
MATTEI ELISABETTA
(syllabus)
Surface forces and volume forces. Traction vector or strain vector.
(reference books)
Traction applied to a free body. Cauchy's relation and Cauchy's tetrahedron. Stress tensor property. Diagonalization of stress matrix Principal axes and planes. Principal stresses. Invariantes. Maximun shear stesses. Spherical, deviatory, hydrostatic, lithostatic stress. The tensor deformation. The antisymmetric tensor of rigid rotations. Principal deformations. Dilatation. Relationships between stress and deformation. Constitutive equations. Rheological function. Linear elasticity. Hooke's Law Generalized. Hooke's law for homogeneous and isotropic media. Duhamel-Neumann equations. Stress-dependent rheological function, deformation and time. Linear viscoelasticity. Time-deformation. Boltzmann Linear Solids with Memory Mechanism. Constitutive equations. Boltzmann's Integral-Differential Equation. Creep and relaxation functions, complex module and quality factor. Linear viscoelastic models of Maxwell, Kelvin-Voigt, SLS. Dynamic theory of elasticity. Elastic waves. Helmholtz-Lamé's elastic potential and theorem. Plane and Spherical waves. Horizontal and vertical slowness. Volume waves. Waves P, S, SH, SV. Phase velocity and Group velocity. Partition and conversion of seismic energy to a surface of discontinuity. Reflection and transmission coefficients. Geometric spreading. Attenuation and scattering of a seismic wave. Surface Waves. Rayleigh and Love Waves. Dispersion of surface waves. Equation and dispersion curve. Fundamental and overtones mode. Free oscillations of the Earth. Spheroidal and toroidal (or torsional) modes. Seismology and earth structure. Refraction seismology. Reflection seismology. Travel times. Travel times In a layered Earth. Direct waves, head wave, Reflected wave, diffracted wave. Shadow zones. Dromocron. Seismic waves in a spherical earth. Short and long-term seismometers. Seismograms and their interpretation. Determination of the epicenter. Volume waves nomenclature. Determination of Hypocentric parameters. The inverse problem. Origin Time. The Seismic Source: radation pattern and Focal Mechanism. Seismic: focal point and focal mechanism. Seismic Moment and Magnitude. Determination of the seismic moment. Earthquake magnitude. Local magnitude, for volume waves, for the Superficial waves. Saturation of magnitude scales. Seismic energy and magnitude momentum. - An introduction to seismology: earthquakes and earth structure. Stein and Wysession. Blakwell publishing.
- Terremoti e onde. Metodi e pratica della sismologia moderna. Zollo e Emolo. Liguori. - Modern global seismology. Lay Thorne AND Terry C. Wallace. Vol. 58. Elsevier, 1995. |
6 | FIS/06 | 60 | - | - | - | Core compulsory activities | ITA | ||||||||||||||||||
20410086 -
ELEMENTI DI RELATIVITA' GENERALE, ASTROFISICA E COSMOLOGIA
(objectives)
The course aims to provide students with the basic concepts of general relativity and its applications to physical systems, with particular reference to compact objects (black holes), gravitational waves and the universe
-
BRANCHINI ENZO FRANCO
(syllabus)
- SPECIAL RELATIVITY. VECTORS AND TENSORS. METRIC TENSOR. ENERGY-MOMENTUM TENSOR.
(reference books)
- GENERAL RELATIVITY. UNDERLYING CONCEPTS. AFFINE CONNECTION. PARALLEL TRANSPORT. GEODESICS EQUATION. - SYMMETRY AND KILLING VECTORS. RIEMANN TENSOR. SINGULARITY. - EINSTEIN EQUATIONS. - SCHWARZSCHILD METRIC. - ORBITS IN THE SCHWARZSCHILD METRIC. MERCURY’S ORBIT. - NON ROTATING BLACK HOLES. EVENT HORIZON AND THE CHOICE OF COORDINATES. - KERR METRIC. ROTATING BLACK HOLES AND FRAME DRAGGING. - INTRODUCTION TO GRAVITATIONAL WAVES. - THE COSMOLOGICAL PRINCIPLE AND ROBERTSON-WALKER METRIC. - FRIEDMAN EQUATIONS. NEWTONIAN LIMIT. - COSMOLOGICAL REDSHIFT. COSMOLOGICAL HORIZONS. CO-MOVING COORDINATES AND PROPER DISTANCE. - LUMINOSITY DISTANCE. ANGULAR DIAMETER DISTANCE. - OBSERVATIONAL TESTS: HUBBLE TEST, ANGULAR DIAMETER TEST, NUMBER COUNTS. - FLUIDS RELEVANT IN COSMOLOGY: EQUATION OF STATE AND DENSITY EVOLUTION. Cosmological constant. - THE EQUIVALENCE EPOCH. - THERMAL HISTORY OF THE UNIVERSE: DECOUPLING. RECOMBINATION. - MATTER/ANTIMATTER AND THE BARYON ASYMMETRY. - PLANCK EPOCH AND QUANTUM GRAVITY. - HORIZON PARADOX. FLATNESS PARADOX. INFLATIONARY SOLUTION. COSMIC INFLATION. - DARK MATTER. - A BRIEF HISTORY OF THE UNIVERSE. HADRONIC EPOCH. LEPTONIC EPOCH. RADIATIVE EPOCH. - NEUTRINO DECOUPLING. - COSMOLOGICAL NUCLEOSYNTHESIS. MATTER EPOCH. FIRST OBJECTS. RE-IONIZATION. - INHOMOGENEITY AND ANISOTROPY. JEANS GRAVITATIONAL INSTABILITY AND THE GROWTH OF COSMIC STRUCTURES Carroll S. Spaceitme Geometry [Pearson 2003]
Coles P., Lucchin F. Cosmology [Wiley 2000] Kolb E., Turner M. The eraly Universe [Addison Wesley 1990] |
6 | FIS/05 | 48 | - | - | - | Core compulsory activities | ITA | ||||||||||||||||||
|
Course | Credits | Scientific Disciplinary Sector Code | Contact Hours | Exercise Hours | Laboratory Hours | Personal Study Hours | Type of Activity | Language | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20410048 -
METODI SPERIMENTALI DI GEOFISICA
(objectives)
Investigations of the interior and exterior of the earth and planets. methods
prospecting and survey of the Earth and space circumterrestrial. Laboratory measurements in situ and on board satellites
-
PETTINELLI ELENA
(syllabus)
Estimation and expression of uncertainty according to GUM (Guide of the expression of uncertainty in measurements – NIST, 2008).
(reference books)
Geophysical signals data analysis with Mathlab. Measurement techniques in situ, in laboratory and from satellite. Electrical and magnetic properties of geomaterials. Electric and magnetic measurements in frequency and time domain. Laboratory activity: use of Impedance LCR and Vector Network Analyzer for the characterization of the dielectric permittivity and magnetic permeability. Electromagnetic propagation in geomaterials. Ground Penetrating Radar: theory and applications. Data analysis and inversion techniques. Meccanical properties of materials. Propagation of P waves in rock samples. Signal analysis in time and frequency domain. Measurement of wave velocity and estimation of elastic parameters. Dispense del docente;
Ground Penetrating Radar – H.M. Jol, 2009, Elsevier; Introduction to the Physics of Rocks Y. Guéguen and V. Palciauskas, 1994, Princeton University Press.
-
MATTEI ELISABETTA
(syllabus)
Experimental methods of geophysics Course program – A, Academic Year 2018/2019 Recalls on the treatment of experimental data and estimate of uncertainties. Expression of the uncertainties of measure in accordance with the GUM (Guide of the expression of uncertainty in measurements - NIST, 2008). Recalls on data analysis of geophysical interests in MATLab. Laboratory measurement techniques, in the field and from satellite. Electrical and magnetic properties of geomaterials. Electrics and magnetic measuraments in the domain of time and frequency. Activities of the boratory: use of the bridge LCR and the Vector Network Analyzer for measure of dielectric permittivity and magnetic permeability. Electromagnetic propagation in geomaterials. Under-seat radar: theoretical bases and applications in environmental field. Activities of the laboratory: techniques of data analysis and estimate of physical parameters; methods of inversion. Mechanical properties of geomaterials. Propagation measurements of P waves in rock samples. Activity of laboratory: Analysis of signals in the domain of time and of the frequency. Estimation of the speed of mechanical waves and elastic parameters. Lecture notes; Ground Penetrating Radar – H.M. Jol, 2009, Elsevier; Introduction to the Physics of Rocks Y. Guéguen and V. Palciauskas, 1994, Princeton University Press. |
8 | FIS/06 | 28 | - | 54 | - | Core compulsory activities | ITA | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Course | Credits | Scientific Disciplinary Sector Code | Contact Hours | Exercise Hours | Laboratory Hours | Personal Study Hours | Type of Activity | Language | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20402228 -
TRAINING
|
6 | - | - | - | - | Other activities | ITA | |||||||||||||||||||
20410392 -
Lingua inglese
|
4 | - | - | - | - | Other activities | ITA | |||||||||||||||||||
20401594 -
FINAL EXAM
|
30 | - | - | - | - | Final examination and foreign language test | ITA | |||||||||||||||||||
|
Course | Credits | Scientific Disciplinary Sector Code | Contact Hours | Exercise Hours | Laboratory Hours | Personal Study Hours | Type of Activity | Language |
---|---|---|---|---|---|---|---|---|
20402209 -
NUCLEAR AND SUBNUCLEAR PHYSICS
(objectives)
To show the basic concepts of elementary particles and the phenomenology of fundamental interactions.
|
8 | FIS/04 | 54 | 24 | - | - | Core compulsory activities | ITA |
20402210 -
Condensed Matter Physics
(objectives)
The course aims to apply the methods of mechanics quantum to the description of the fundamental properties of solid matter.
|
8 | FIS/03 | 60 | 24 | - | - | Core compulsory activities | ITA |
20401904 -
THEORETICAL PHYSICS I
(objectives)
To study classical electrodynamics in detail, to provide the elements of relativistic quantum mechanics. Provide the basics of field theory and QED
|
8 | FIS/02 | 46 | 22 | - | - | Core compulsory activities | ITA |
20402211 -
COMPLEMENTS OF MATHEMATICAL METHODS FOR PHYSICS
(objectives)
The aim of the course is to learn the basic tools to deal with Lie algebras and their representations and to acquire computer calculation techniques,both for symbolic and for numerical calculations. Topics of the course
will be dealt with using either Wolfram Language and Python or alternative computer languages preferred by the student.
-
FRANCESCHINI ROBERTO
(syllabus)
Group Theory (CA)
(reference books)
SU(2) and SU(3) The Killing Form Simple Lie Algebras Representations Simple Roots and the Cartan Matrix The Classical Lie Algebras The Exceptional Lie Algebras Casimir Operators and Freudenthal’s Formula The Weyl Group Weyl’s Dimension Formula Reducing Product Representations Subalgebras Branching Rules Numerical Methods Refresh on Probability and Random variables Refresh on Measurement, uncertainty and its propagation Refresh on Curve-fitting, least-squares, optimization Classical numerical integration, speed of convergence Integration MC (Mean, variance) Sampling Strategies Applications Propagation of uncertainties Generation according to a distribution Sections of the textbooks for each topic are listed on http://webusers.fis.uniroma3.it/franceschini/cmm.html Robert Cahn - Semi-Simple Lie Algebras and Their Representations - Dover Publications 2014 (available at Roma TRE BAST Sede Centrale and from the author's web page ) Weinzierl, S. - Introduction to Monte Carlo methods arXiv:hep-ph/0006269 Taylor, J. - An introduction to error analysis - University Science Books Sausalito, California Disponibile nella biblioteca Scientifica di Roma Tre Dubi, A. - Monte Carlo applications in systems engineering - Wiley Disponibile nella biblioteca Scientifica di Roma Tre readings supplied during class and listed on the web http://webusers.fis.uniroma3.it/franceschini/cmm.html |
6 | FIS/02 | 34 | 18 | - | - | Core compulsory activities | ITA |
Course | Credits | Scientific Disciplinary Sector Code | Contact Hours | Exercise Hours | Laboratory Hours | Personal Study Hours | Type of Activity | Language | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20402213 -
Fundamentals of Earth and Environmental Physics
(objectives)
The course is structured on the basic concepts of Solid and Fluid Earth Physics in order to provide the student with a coherent and updated picture of this discipline, both from a theoretical and an experimental point of view
|
6 | FIS/06 | 48 | - | - | - | Core compulsory activities | ITA | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20410502 -
DIDACTIC OF PHYSICS
(objectives)
The course aims to provide the student with the necessary skills to practice effective teaching of Physics in Upper Secondary School with particular attention to: a) knowledge of research literature on teaching in Physics, the Italian educational system and school regulations; b) to the design of culturally significant educational paths for the teaching of physics; c) the production of materials for the measurement and verification of learning through the exercise of formative assessment; d) the role of the "laboratory" to be understood as a working method that involves students in an active and participatory way, which encourages experimentation and planning.
-
PROIETTI ORIETTA
(syllabus)
Module 1. From common knowledge to scientific knowledge. The indicators of scientific knowledge; the contribution of formal education to the image of science; scientific communication.
(reference books)
Module 2. Physics education, a research fieldOrigin and development of research in physics education in Italy; the constructivist paradigm; concepts and misconceptions; research on mental representations; conceptual change models; the conceptual nuclei of Physics. Module 3. Scientific teaching in secondary school Design the curriculum of Physics in the different orders and in the various study addresses; the teaching / learning process; orientation teaching and laboratory teaching as a didactic methodological approach; from content to programming by skills; training orientation. Module 4. The role of the "laboratory" in learning Physics Integration between theory and experimental verification; from observation of the phenomenon to the construction of the model; the different ways of "doing laboratory"; design of work units identifying the most appropriate experimental activities (demonstration; in the classroom with poor materials, in the instrumental laboratory, simulated through multimedia aids); implementation of laboratory operational skills for experiment management. Module 5. Flexible and modular design of content / knowledge, teaching methodologies and learning environments Core foundations of Physics; analysis and planning of didactic courses that respond to verticality criteria (evolution of concepts coherent and appropriate to students' cognitive development) and transversality (integration of Physics with other disciplines); simulations of teaching methodologies such as: dialogue lesson, microteaching, co-planning, peer-to-peer evaluation, cooperative learning activities, group work. Module 6. Learning evaluation of learning Modes and tools used in the various stages of monitoring, measurement, verification, evaluation and self-evaluation of learning; identification of learning contexts capable of developing and detecting skills; the National Evaluation System (SNV). Module 7. Modern and Contemporary Physics The role of modern and contemporary Physics in school curricula: what content / paths to propose that guarantee students a real understanding of them. The new State Exam and the role of Physics in the second written test in scientific high schools. Instrumental laboratory. Five instrumental laboratories of three hours each in the months of March, April and May. Students can take advantage of the following teaching material on the Platform of the Department of Mathematics and Physics: Power-pointrelative presentations to the contents of the lessons, research articles, work material (texts to be analyzed taken from textbooks, articles of scientific dissemination, original memories , “tutorial” cards, videos, applets, cards for group work, grids for assessing learning, web-sites).
ESSENTIAL BIBLIOGRAFY Arons Arnold B. 1992, Guida all'insegnamento della fisica, Zanichelli•P. Guidoni, M. Arcà 2000 –Guardare per sistemi e guardare per variabili –l’educazione scientifica di base -AIF Editore•Vicentini M., Mayer M. (a cura di) (1999). Didattica della Fisica, Loescher Editore.•Grimellini Tomasini N., Segré G. (a cura di) (1991). Conoscenze scientifiche: le rappresentazioni mentali degli studenti, La Nuova Italia, Firenze.•La fisica secondo il PSSC, 25 film del Physical Science Study-Zanichelli•F. Bocci, Manuale per il laboratorio di fisica: introduzione all’analisi dei dati sperimentali -Zanichell |
8 | FIS/08 | 32 | - | 32 | - | Core compulsory activities | ITA | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20410503 -
DIDACTIC OF MATHEMATICS
(objectives)
1. Critical analysis of the evolution of ideas and methods of mathematics teaching, with particular regard to the role of the teacher. 2. The mathematics curriculum in compulsory education and in the various addresses of secondary schools (high schools, technical institutes and professional institutes) in an international framework 3. Teaching design and teaching methods of mathematics: programming and rhythm, principles and methods for activity building, class management. 4. Troubleshooting. Logic, intuition and history in the teaching of mathematics.
-
Derived from
20410456 MC420-DIDATTICA DELLA MATEMATICA in Matematica LM-40 MAGRONE PAOLA
(syllabus)
The course aims to introduce students to the teaching of mathematics in first and second grade secondary schools, through a historical-epistemological approach to the basic concepts of elementary mathematics (arithmetic, geometry, algebra, probability, functions). In particular: the teaching of mathematics and its evolution; numerical systems; Euclid's axioms and postulates; non-Euclidean and locally Euclidean geometries; geometric constructions with ruler and compass and mathematical machines; elements of history of infinitesimal calculus. Outline of national indications. GIORGIO ISRAEL, ANA MILLÁN GASCA, Pensare in matematica, Zanichelli, 2012.
ANA MILLÁN GASCA, All'inizio fu lo scriba, Mimesis, 2004 ENRICO GIUSTI, Analisi matematica 1, Bollati Boringhieri, 2002 |
6 | MAT/04 | 36 | 16 | - | - | Related or supplementary learning activities | ITA | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20410086 -
ELEMENTI DI RELATIVITA' GENERALE, ASTROFISICA E COSMOLOGIA
(objectives)
The course aims to provide students with the basic concepts of general relativity and its applications to physical systems, with particular reference to compact objects (black holes), gravitational waves and the universe
-
BRANCHINI ENZO FRANCO
(syllabus)
- SPECIAL RELATIVITY. VECTORS AND TENSORS. METRIC TENSOR. ENERGY-MOMENTUM TENSOR.
(reference books)
- GENERAL RELATIVITY. UNDERLYING CONCEPTS. AFFINE CONNECTION. PARALLEL TRANSPORT. GEODESICS EQUATION. - SYMMETRY AND KILLING VECTORS. RIEMANN TENSOR. SINGULARITY. - EINSTEIN EQUATIONS. - SCHWARZSCHILD METRIC. - ORBITS IN THE SCHWARZSCHILD METRIC. MERCURY’S ORBIT. - NON ROTATING BLACK HOLES. EVENT HORIZON AND THE CHOICE OF COORDINATES. - KERR METRIC. ROTATING BLACK HOLES AND FRAME DRAGGING. - INTRODUCTION TO GRAVITATIONAL WAVES. - THE COSMOLOGICAL PRINCIPLE AND ROBERTSON-WALKER METRIC. - FRIEDMAN EQUATIONS. NEWTONIAN LIMIT. - COSMOLOGICAL REDSHIFT. COSMOLOGICAL HORIZONS. CO-MOVING COORDINATES AND PROPER DISTANCE. - LUMINOSITY DISTANCE. ANGULAR DIAMETER DISTANCE. - OBSERVATIONAL TESTS: HUBBLE TEST, ANGULAR DIAMETER TEST, NUMBER COUNTS. - FLUIDS RELEVANT IN COSMOLOGY: EQUATION OF STATE AND DENSITY EVOLUTION. Cosmological constant. - THE EQUIVALENCE EPOCH. - THERMAL HISTORY OF THE UNIVERSE: DECOUPLING. RECOMBINATION. - MATTER/ANTIMATTER AND THE BARYON ASYMMETRY. - PLANCK EPOCH AND QUANTUM GRAVITY. - HORIZON PARADOX. FLATNESS PARADOX. INFLATIONARY SOLUTION. COSMIC INFLATION. - DARK MATTER. - A BRIEF HISTORY OF THE UNIVERSE. HADRONIC EPOCH. LEPTONIC EPOCH. RADIATIVE EPOCH. - NEUTRINO DECOUPLING. - COSMOLOGICAL NUCLEOSYNTHESIS. MATTER EPOCH. FIRST OBJECTS. RE-IONIZATION. - INHOMOGENEITY AND ANISOTROPY. JEANS GRAVITATIONAL INSTABILITY AND THE GROWTH OF COSMIC STRUCTURES Carroll S. Spaceitme Geometry [Pearson 2003]
Coles P., Lucchin F. Cosmology [Wiley 2000] Kolb E., Turner M. The eraly Universe [Addison Wesley 1990] |
6 | FIS/05 | 48 | - | - | - | Core compulsory activities | ITA | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Course | Credits | Scientific Disciplinary Sector Code | Contact Hours | Exercise Hours | Laboratory Hours | Personal Study Hours | Type of Activity | Language | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Course | Credits | Scientific Disciplinary Sector Code | Contact Hours | Exercise Hours | Laboratory Hours | Personal Study Hours | Type of Activity | Language | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20410392 -
Lingua inglese
|
4 | - | - | - | - | Other activities | ITA | |||||||||||||||||||
20401594 -
FINAL EXAM
|
30 | - | - | - | - | Final examination and foreign language test | ITA | |||||||||||||||||||
20402228 -
TRAINING
|
6 | 150 | - | - | - | Other activities | ITA | |||||||||||||||||||
|
Course | Credits | Scientific Disciplinary Sector Code | Contact Hours | Exercise Hours | Laboratory Hours | Personal Study Hours | Type of Activity | Language |
---|---|---|---|---|---|---|---|---|
20402209 -
NUCLEAR AND SUBNUCLEAR PHYSICS
(objectives)
To show the basic concepts of elementary particles and the phenomenology of fundamental interactions.
|
8 | FIS/04 | 54 | 24 | - | - | Core compulsory activities | ITA |
20401904 -
THEORETICAL PHYSICS I
(objectives)
To study classical electrodynamics in detail, to provide the elements of relativistic quantum mechanics. Provide the basics of field theory and QED
|
8 | FIS/02 | 46 | 22 | - | - | Core compulsory activities | ITA |
20402210 -
Condensed Matter Physics
(objectives)
The course aims to apply the methods of mechanics quantum to the description of the fundamental properties of solid matter.
|
8 | FIS/03 | 60 | 24 | - | - | Core compulsory activities | ITA |
20402211 -
COMPLEMENTS OF MATHEMATICAL METHODS FOR PHYSICS
(objectives)
The aim of the course is to learn the basic tools to deal with Lie algebras and their representations and to acquire computer calculation techniques,both for symbolic and for numerical calculations. Topics of the course
will be dealt with using either Wolfram Language and Python or alternative computer languages preferred by the student.
-
FRANCESCHINI ROBERTO
(syllabus)
Group Theory (CA)
(reference books)
SU(2) and SU(3) The Killing Form Simple Lie Algebras Representations Simple Roots and the Cartan Matrix The Classical Lie Algebras The Exceptional Lie Algebras Casimir Operators and Freudenthal’s Formula The Weyl Group Weyl’s Dimension Formula Reducing Product Representations Subalgebras Branching Rules Numerical Methods Refresh on Probability and Random variables Refresh on Measurement, uncertainty and its propagation Refresh on Curve-fitting, least-squares, optimization Classical numerical integration, speed of convergence Integration MC (Mean, variance) Sampling Strategies Applications Propagation of uncertainties Generation according to a distribution Sections of the textbooks for each topic are listed on http://webusers.fis.uniroma3.it/franceschini/cmm.html Robert Cahn - Semi-Simple Lie Algebras and Their Representations - Dover Publications 2014 (available at Roma TRE BAST Sede Centrale and from the author's web page ) Weinzierl, S. - Introduction to Monte Carlo methods arXiv:hep-ph/0006269 Taylor, J. - An introduction to error analysis - University Science Books Sausalito, California Disponibile nella biblioteca Scientifica di Roma Tre Dubi, A. - Monte Carlo applications in systems engineering - Wiley Disponibile nella biblioteca Scientifica di Roma Tre readings supplied during class and listed on the web http://webusers.fis.uniroma3.it/franceschini/cmm.html |
6 | FIS/02 | 34 | 18 | - | - | Core compulsory activities | ITA |
Course | Credits | Scientific Disciplinary Sector Code | Contact Hours | Exercise Hours | Laboratory Hours | Personal Study Hours | Type of Activity | Language | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20402213 -
Fundamentals of Earth and Environmental Physics
(objectives)
The course is structured on the basic concepts of Solid and Fluid Earth Physics in order to provide the student with a coherent and updated picture of this discipline, both from a theoretical and an experimental point of view
|
6 | FIS/06 | 48 | - | - | - | Core compulsory activities | ITA | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20410086 -
ELEMENTI DI RELATIVITA' GENERALE, ASTROFISICA E COSMOLOGIA
(objectives)
The course aims to provide students with the basic concepts of general relativity and its applications to physical systems, with particular reference to compact objects (black holes), gravitational waves and the universe
-
BRANCHINI ENZO FRANCO
(syllabus)
- SPECIAL RELATIVITY. VECTORS AND TENSORS. METRIC TENSOR. ENERGY-MOMENTUM TENSOR.
(reference books)
- GENERAL RELATIVITY. UNDERLYING CONCEPTS. AFFINE CONNECTION. PARALLEL TRANSPORT. GEODESICS EQUATION. - SYMMETRY AND KILLING VECTORS. RIEMANN TENSOR. SINGULARITY. - EINSTEIN EQUATIONS. - SCHWARZSCHILD METRIC. - ORBITS IN THE SCHWARZSCHILD METRIC. MERCURY’S ORBIT. - NON ROTATING BLACK HOLES. EVENT HORIZON AND THE CHOICE OF COORDINATES. - KERR METRIC. ROTATING BLACK HOLES AND FRAME DRAGGING. - INTRODUCTION TO GRAVITATIONAL WAVES. - THE COSMOLOGICAL PRINCIPLE AND ROBERTSON-WALKER METRIC. - FRIEDMAN EQUATIONS. NEWTONIAN LIMIT. - COSMOLOGICAL REDSHIFT. COSMOLOGICAL HORIZONS. CO-MOVING COORDINATES AND PROPER DISTANCE. - LUMINOSITY DISTANCE. ANGULAR DIAMETER DISTANCE. - OBSERVATIONAL TESTS: HUBBLE TEST, ANGULAR DIAMETER TEST, NUMBER COUNTS. - FLUIDS RELEVANT IN COSMOLOGY: EQUATION OF STATE AND DENSITY EVOLUTION. Cosmological constant. - THE EQUIVALENCE EPOCH. - THERMAL HISTORY OF THE UNIVERSE: DECOUPLING. RECOMBINATION. - MATTER/ANTIMATTER AND THE BARYON ASYMMETRY. - PLANCK EPOCH AND QUANTUM GRAVITY. - HORIZON PARADOX. FLATNESS PARADOX. INFLATIONARY SOLUTION. COSMIC INFLATION. - DARK MATTER. - A BRIEF HISTORY OF THE UNIVERSE. HADRONIC EPOCH. LEPTONIC EPOCH. RADIATIVE EPOCH. - NEUTRINO DECOUPLING. - COSMOLOGICAL NUCLEOSYNTHESIS. MATTER EPOCH. FIRST OBJECTS. RE-IONIZATION. - INHOMOGENEITY AND ANISOTROPY. JEANS GRAVITATIONAL INSTABILITY AND THE GROWTH OF COSMIC STRUCTURES Carroll S. Spaceitme Geometry [Pearson 2003]
Coles P., Lucchin F. Cosmology [Wiley 2000] Kolb E., Turner M. The eraly Universe [Addison Wesley 1990] |
6 | FIS/05 | 48 | - | - | - | Core compulsory activities | ITA | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20410502 -
DIDACTIC OF PHYSICS
(objectives)
The course aims to provide the student with the necessary skills to practice effective teaching of Physics in Upper Secondary School with particular attention to: a) knowledge of research literature on teaching in Physics, the Italian educational system and school regulations; b) to the design of culturally significant educational paths for the teaching of physics; c) the production of materials for the measurement and verification of learning through the exercise of formative assessment; d) the role of the "laboratory" to be understood as a working method that involves students in an active and participatory way, which encourages experimentation and planning.
-
PROIETTI ORIETTA
(syllabus)
Module 1. From common knowledge to scientific knowledge. The indicators of scientific knowledge; the contribution of formal education to the image of science; scientific communication.
(reference books)
Module 2. Physics education, a research fieldOrigin and development of research in physics education in Italy; the constructivist paradigm; concepts and misconceptions; research on mental representations; conceptual change models; the conceptual nuclei of Physics. Module 3. Scientific teaching in secondary school Design the curriculum of Physics in the different orders and in the various study addresses; the teaching / learning process; orientation teaching and laboratory teaching as a didactic methodological approach; from content to programming by skills; training orientation. Module 4. The role of the "laboratory" in learning Physics Integration between theory and experimental verification; from observation of the phenomenon to the construction of the model; the different ways of "doing laboratory"; design of work units identifying the most appropriate experimental activities (demonstration; in the classroom with poor materials, in the instrumental laboratory, simulated through multimedia aids); implementation of laboratory operational skills for experiment management. Module 5. Flexible and modular design of content / knowledge, teaching methodologies and learning environments Core foundations of Physics; analysis and planning of didactic courses that respond to verticality criteria (evolution of concepts coherent and appropriate to students' cognitive development) and transversality (integration of Physics with other disciplines); simulations of teaching methodologies such as: dialogue lesson, microteaching, co-planning, peer-to-peer evaluation, cooperative learning activities, group work. Module 6. Learning evaluation of learning Modes and tools used in the various stages of monitoring, measurement, verification, evaluation and self-evaluation of learning; identification of learning contexts capable of developing and detecting skills; the National Evaluation System (SNV). Module 7. Modern and Contemporary Physics The role of modern and contemporary Physics in school curricula: what content / paths to propose that guarantee students a real understanding of them. The new State Exam and the role of Physics in the second written test in scientific high schools. Instrumental laboratory. Five instrumental laboratories of three hours each in the months of March, April and May. Students can take advantage of the following teaching material on the Platform of the Department of Mathematics and Physics: Power-pointrelative presentations to the contents of the lessons, research articles, work material (texts to be analyzed taken from textbooks, articles of scientific dissemination, original memories , “tutorial” cards, videos, applets, cards for group work, grids for assessing learning, web-sites).
ESSENTIAL BIBLIOGRAFY Arons Arnold B. 1992, Guida all'insegnamento della fisica, Zanichelli•P. Guidoni, M. Arcà 2000 –Guardare per sistemi e guardare per variabili –l’educazione scientifica di base -AIF Editore•Vicentini M., Mayer M. (a cura di) (1999). Didattica della Fisica, Loescher Editore.•Grimellini Tomasini N., Segré G. (a cura di) (1991). Conoscenze scientifiche: le rappresentazioni mentali degli studenti, La Nuova Italia, Firenze.•La fisica secondo il PSSC, 25 film del Physical Science Study-Zanichelli•F. Bocci, Manuale per il laboratorio di fisica: introduzione all’analisi dei dati sperimentali -Zanichell |
8 | FIS/08 | 32 | - | 32 | - | Core compulsory activities | ITA | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20410328 -
ELEMENTI DI GEOLOGIA II
(objectives)
Through a comprehensive view of Planet Earth, the course aims to provide an adequate mastery of the scientific contents of the Earth Sciences. The course talks about the modern aspects of Earth Sciences, framing geological phenomena within the framework of the most modern theories and illustrating the danger and risks associated with natural phenomena such as, for example, seismic and volcanic phenomena, also with reference to the geology of the Italian territory . The course also aims to provide the basis for understanding the cycle of rocks, their genetic processes and training environments through laboratory and soil experiences. During the exercises and the educational excursions the students will be stimulated to understand the different aspects of the Italian territory, with particular regard to its environmental value.
|
6 | GEO/03 | 48 | - | - | - | Related or supplementary learning activities | ITA | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Course | Credits | Scientific Disciplinary Sector Code | Contact Hours | Exercise Hours | Laboratory Hours | Personal Study Hours | Type of Activity | Language | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20410003 -
Introduzione alla Biologia
(objectives)
INTRODUCTION TO THE METHODS OF BIOLOGICAL RESEARCH, INTENDED AS A SYSTEMATIC, CONTROLLED, EMPIRICAL AND CRITICAL STUDY OF NATURAL PHENOMENOLOGY, WHICH IS DEVELOPED FROM THE FORMULATION OF AN HYPOTHESIS UNTIL THE CONSTRUCTION OF THE EXPLANATION. SETTING THE BASIC SKILLS RELATIVE TO THE PROCESSING OF EXPERIMENTAL RESULTS AND THE COMMUNICATION IN THE WRITTEN FORM. ALSO, A LESSONS CYCLE WILL BE DEDICATED TO THE MOST PROFITABLE STUDY METHODS
-
Derived from
20410003 Introduzione alla Biologia in Scienze biologiche L-13 NESSUNA CANALIZZAZIONE ANGELINI RICCARDO, VENTURINI GIORGIO, ZOCCHI ALESSANDRO
(syllabus)
The program focuses on major themes of Biological Evolution of animal and plant organisms. Light and Life, Evolution of photomorphogenesis, Secondary metabolites of plants, The conquest of emerged lands, plants-insect co-evolution. No textbook indicated - Suggested readings:
PLANT PHYSIOLOGY (IN ENGLISH LANGUAGE) LINCOLN TAIZ- EDUARDO ZEIGER SINAUER ASSOCIATES (Sixth EDITION) FISIOLOGIA VEGETALE (IN LINGUA ITALIANA) LINCOLN TAIZ- EDUARDO ZEIGER PICCIN EDITORE IV EDIZIONE (TRADOTTO DALLA QUINTA EDIZIONE IN LINGUA INGLESE) The teacher receives every day (Monday-Friday) by appointment by institutional e-mail |
7 | BIO/13 | - | - | - | - | Related or supplementary learning activities | ITA | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Course | Credits | Scientific Disciplinary Sector Code | Contact Hours | Exercise Hours | Laboratory Hours | Personal Study Hours | Type of Activity | Language | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20410392 -
Lingua inglese
|
4 | - | - | - | - | Other activities | ITA | |||||||||||||||||||
20401594 -
FINAL EXAM
|
30 | - | - | - | - | Final examination and foreign language test | ITA | |||||||||||||||||||
20402228 -
TRAINING
|
6 | 150 | - | - | - | Other activities | ITA | |||||||||||||||||||
|