Course
|
Credits
|
Scientific Disciplinary Sector Code
|
Contact Hours
|
Exercise Hours
|
Laboratory Hours
|
Personal Study Hours
|
Type of Activity
|
Language
|
20810204 -
Dynamics and Control of Complex Systems
(objectives)
Provide to the students methodologies and techniques for the analysis and modeling of linear time-invariant systems by focusing on the state-space representation. Provide the knowledge for the design of feedback control systems. Derive the state-space model of Multi-Input Multi-Output systems. Provide the knowledge of the structural properties of MIMO dynamical models and the asymptotic observer for the eigenvalue assignment problem and the regulation problem. Provide the students with basic concepts for the analysis of nonlinear system.
-
GASPARRI ANDREA
( syllabus)
Linear Systems 1. INTRODUCTION TO LINEAR SYSTEMS 1.1. Modelling 1.2. State-Space Representation 2. DIFFERENTIAL EQUATIONS 2.1. Linear Differential Equations with Constant Coefficients 2.2. Exponential Matrix 2.3. Free Evolution 2.4. Forced Evolution 3. RELATIONSHIP BETWEEN REPRESENTATIONS 3.1. From State-Spate to Transfer Function 3.2. From Transfer Function to State-Spate 4. MODAL DECOMPOSITION 4.1. Eigenvalues and Eigenvectors 4.2. Coordinate Transformation 4.3. Diagonalization and Jordanization 5. STRUCTURAL PROPERTIES 5.1. Controllability and Observability 5.2. Controllability and Observability Kalman Forms 5.3. Kalman Canonical Decomposition 7. EIGENVALUE ASSIGNMENT PROBLEM 7.1. Eigenvalue assignment using state feedback 7.1.1. Assignment Theorem (SISO/MIMO) 7.1.2. Assignment Unicity Theorem (SISO) 7.2. Stabilization Problem 7.3. State Asymptotic Observer 7.4. Separation Principle 7.5. Eigenvalue placement using output feedback 8. LINEAR OUTPUT REGULATION PROBLEM 8.1. Full-Information Problem 8.2. Error-Feedback Problem Nonlinear Systems 9. INTRODUCTION TO NONLINEAR SYSTEMS 9.1. Fundamental Properties 9.2. Lipschitz Condition 9.3. Existence and Unicity of Solution 9.4. Comparison Lemma 10. LYAPUNOV STABILITY 10.1. Autonomous Systems 10.2. Stability Definition 10.3. Stability Theorem (Direct Criterion) 10.4. Chetaev Instability Theorem 10.5. Lyapunov Control Functions (Krasovskii) 10.6. Invariance Principle (LaSalla Theorem) 10.7. Stability Theorem for Linear Systems (Indirect Criterion)
( reference books)
Linear Systems 1. An Introduction to Linear Control Systems, Thomas E. Fortmann, Konrad L. Hitz 2. Lecture Notes (http://gasparri.dia.uniroma3.it/Stuff/complementi_teoria_dei_sistemi.pdf) 3. Sistemi di controllo (Vol. 2), Alberto Isidori
Nonlinear Systems 1. Nonlinear Systems (3rd Edition), Hassan K. Khalil
|
9
|
ING-INF/04
|
81
|
-
|
-
|
-
|
Core compulsory activities
|
ITA |
20802112 -
SIMULATION OF INDUSTRIAL AND LOGISTIC PROCESSES
(objectives)
It gives a formal instruments to model information flows and to optimize the operation management of production systems, in particular of flexible manufacturing systems.
-
ADACHER LUDOVICA
( syllabus)
SCHEDULING
CONTROLLO DELLE OPERAZIONI SU UNA MACCHINA EDD,SPT,MOORE, SMITH, SMITH MODIFICATO, LAWLER
CONTROLLO DELLE OPERAZIONI NELLE CELLE GRAFO DEGLI STATI, CONFLITTI, PROGRAMMAZIONE DINAMICA E A*.
CONTROLLO DELLE OPERAZIONI NELLE LINEE ALGORITMO DI JOHNSON PER IL SEQUENZIAMENTO SU DUE MACCHINE APPLICAZIONE DELL'ALGORITMO DI GILMORE E GOMORY A LINEE DI DUE MACCHINE SENZA ATTESA INTERMEDIA
MINIMO RITARDO MASSIMO CON TEMPO DI RILASCIO POSITIVO E INTERRUZIONE: 'BRANCH AND BOUND"; GRAFO DISGIUNTIVO PER IL JOB SHOP ("CLIQUE" DI MACCHINE) SEQUENZIAMENTO DI MACCHINA SPOSTANDO IL COLLO DI BOTTIGLIA: EURISTICA RISOLUTIVA PER IL JOB SHOP ("SHIFTING BOTTLENECK")
SIMULAZIONE
LA SIMULAZIONE AD EVENTI DISCRETI, METODOLOGIA FONDAMENTALE PER LA VALUTAZIONE DELLE PRESTAZIONI DI SISTEMI COMPLESSI (DI CALCOLO, DI TELECOMUNICAZIONE, DI TRAFFICO, ECC) È LA MATERIA SU CUI VERTE QUESTO CORSO. PUR ESSENDO DI CARATTERE INTRODUTTIVO, IL CORSO HA COME OBIETTIVO DI RENDERE LO STUDENTE IN GRADO DI AFFRONTARE LO STUDIO DI CASI REALI AVENDO CONOSCENZA DEL METODO DA SEGUIRE E DELLE POTENZIALITÀ DELLE TECNICHE DISPONIBILI
GLI ARGOMENTI TRATTATI POSSONO ESSERE RAGGRUPPATI NEI SEGUENTI TRE FASI:
O COSTRUZIONE DI UN MODELLO DI UN SISTEMA REALE:
VERRANNO DISCUSSI I CONCETTI DI LIVELLO DI ASTRAZIONE E ADEGUATEZZA DI UN MODELLO, E ILLUSTRATE ALCUNE METODOLOGIE PER LA COSTRUZIONE DEI MODELLI. GLI ESEMPI VERRANNO SVILUPPATI UTILIZZANDO DUE FORMALISMI MOLTO NOTI: LE RETI DI CODE E LE RETI DI PETRI. SARANNO INOLTRE DISCUSSE ALCUNE SEMPLICI LEGGI OPERAZIONALI CHE SERVONO PER LA DEFINIZIONE DEGLI INDICI DI PRESTAZIONE DEI MODELLI.
O "ESECUZIONE" DI UN MODELLO DI SIMULAZIONE VERRÀ SPIEGATO COSA SIGNIFICA ESEGUIRE UN MODELLO DI SIMULAZIONE E COME SI PUÒ REALIZZARE UN PROGRAMMA DI SIMULAZIONE AD EVENTI DISCRETI. I MODELLI DI SIMULAZIONE CHE SARANNO TRATTATI SONO MODELLI PROBABILISTICI, OVVERO MODELLI LA CUI EVOLUZIONE È GOVERNATA DA LEGGI CASUALI. QUESTO RICHIEDERÀ UN RICHIAMO DEI FONDAMENTI DI CALCOLO DELLE PROBABILITÀ. VERRANNO INOLTRE PRESENTATI METODI PER LA GENERAZIONE DI ISTANZE DI VARIABILI CASUALI.
O INTERPRETAZIONE DEI RISULTATI DELLA SIMULAZIONE: I RISULTATI PRODOTTI DA UN SIMULATORE COSTITUISCONO LE COMPONENTI DI UN CAMPIONE STATISTICO E COME TALI DEVONO ESSERE UTILIZZATI PER LA CONFERMA DELLA LORO VALIDITÀ. IL CORSO INCLUDE IL RICHIAMO DI ALCUNI ELEMENTI FONDAMENTALI DI STATISTICA UTILI PER LA PRESENTAZIONE DEI METODI CHE PERMETTONO LA STIMA INTERVALLARE DEGLI INDICI DI PRESTAZIONE DEI MODELLI STUDIATI. SARÀ RICHIESTO AGLI STUDENTI DI SVOLGERE DEGLI ESERCIZI PRATICI PER VERIFICARE LA COMPRENSIONE DI QUANTO ESPOSTO A LEZIONE. GLI STUDENTI DOVRANNO MOSTRARE SIA CAPACITÀ DI ANALISI DI PROBLEMI REALI E IMPOSTAZIONE DI ALGORITMI RISOLUTIVI IN VIA SIMULATIVA, SIA CAPACITÀ OPERATIVE DI PROGRAMMAZIONE CON LINGUAGGI STANDARD (C, JAVA).
( reference books)
slides on home page of professor
|
9
|
ING-INF/04
|
81
|
-
|
-
|
-
|
Core compulsory activities
|
ITA |
Optional group:
Curriculum Automazione dei Sistemi Complessi: I ANNO uno a scelta tra due insegnamenti - (show)
|
6
|
|
|
|
|
|
|
|
20810208 -
Decision Support Systems and Analytics
(objectives)
The aim of the course is to present the main theoretical and methodological tools for modeling decisions and for identifying the best decision support strategies. The course also aims at providing the skills on how to use the available data in analytical prescriptive models, how to read the results provided by the adopted models and how to interpret them to propose appropriate solutions to complex management problems.
-
NICOSIA GAIA
( syllabus)
Overview on decision making and Decision Support Systems (DSS). Model Driven DSS. Introduction to Business Analytics. Mathematical modeling (examples of LP, ILP, and NLP formulations). Predictive analytics, optimal classification trees, examples. Basics on computational complexity. Prescriptive analytics. Heuristic algorithms: constructive heuristics, local search, variable depth local search, Tabu Search, Simulated Annealing, genetic algorithms, hints to other metaheuristics. Robust Optimization. Study of real cases (optimization of the flows in the distribution of frozen food, optimization of staff shifts in hospital departments, optimial routing for the collection of material for laboratory analysis, optimal management of the warehouse of a company that deals with online sales, ....).
( reference books)
1. Modelli e metodi decisionali in condizioni di incertezza e rischio, di G. Ghiani, R. Musmanno (a cura di), McGraw-Hill Education, 2009. 2. Slides e notes given by the lecturer
|
6
|
MAT/09
|
54
|
-
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
|
Optional group:
Curriculum Automazione dei Sistemi Complessi I anno : uno a scelta tra quattro insegnamenti - (show)
|
6
|
|
|
|
|
|
|
|
20801758 -
DATABASES I
(objectives)
Presentation of models, methods and tools for the definition, design and development of software systems that manage large sets of data. A student who has passed the course will be able to: (i) develop software applications that make use of databases of even high complexity, (i) design and built autonomously databases of medium complexity, and (iii) be involved in the project and development of large databases of high complexity.
|
6
|
ING-INF/05
|
54
|
-
|
-
|
-
|
Core compulsory activities
|
ITA |
20801961 -
OPERATING SYSTEMS
(objectives)
The course intend to provide: (1) competencies about a generic modern operating system, (2) competencies about the structure of a unix operating system, and specifically about linux, (3) knowledge about methodologies adopted for solving problems within the management of a modern operating system, (4) ability in the use a unix platform as a user, (5) ability in programming a unix system (scripting), (6) basic ability in system programming
-
Derived from
20801961 SISTEMI OPERATIVI in Ingegneria informatica L-8 N0 MAROTTA ROMOLO
( syllabus)
- Computer System Overview: architecture, CPU, registers, instruction execution, interrupt, memory hierarchy, locality, I/O, procedures - Operating Systems Overview: definitions, objectives, architecture, kernel/user mode, caratteristiche salienti - Processes and Threads: dispatching, states, description and control, models and memory management - Memory: allocators, partitioning, best/first/next fit, buddy algorithm, paging, segmentation, virtual memory and its hardware/software management/supports - Scheduling: short-term and long-term scheduling, algorithms for cpu scheduling - I/O and File Management: Disk scheduling, UNIX File Management, inode, Linux VFS, ext2 - Synchronization: primitives, RMW, mutex, semaphores - Introduction to Linux: frequently-used commands (e.g., file and directory management), environment variables, piping, redirection, signals, regular expressions (sed e grep), scripting (bash, awk), linux filesystem management - Debugger: gdb stepping, breakpoints, watching, backtrace, and commands. - System programming: Linux process/thread management - Virtualization: general concepts, containers, Docker
( reference books)
The course is partly based on
[t1] Operating Systems: Internals and Design Principles - William Stallings - Prentice Hall, fifth edition (or higher). Reference edition: ninth. [t2] Operating Systems Concepts - Silberschatz Abraham, Galvin Peter Baer, Gagne Greg - Addison Wesley/Pearson, ninth edition (or higher). Reference edition: tenth global edition.
However, some topics are covered only on the slides published in the teaching material.
|
6
|
ING-INF/05
|
54
|
-
|
-
|
-
|
Core compulsory activities
|
ITA |
|
Optional group:
Curriculum Automazione dei Sistemi Complessi: I ANNO due a scelta tra cinque insegnamenti - (show)
|
12
|
|
|
|
|
|
|
|
20801761 -
ELEMENTS OF ORGANISATION
(objectives)
Provide the notions and develop the logics necessary to understand the formal description and the actual functioning of firms and institutions, and their evolutionary tendencies related to the evolution of their operating environment. Introducing to organizational analysis, bringing the student to be able to think about the relationships between market, strategy, structure and processes from a total quality perspective and taking into account people's organizational behaviors and motivations.
-
PROTTO STEFANO
( syllabus)
• 1. INTRODUCTION 1.1. General topics and definitions 1.2. Historical overview 1.3. Dynamic and static models 1.4. Effects of instability, Burns & Stalker's model 1.4. Current Scenario and evolutionary trends
• 2. STRUCTURES 2.1. Definitions 2.2. Delegation/Proxy concept 2.3. Structuring resources, types of Organizational Structures and operation 2.4. Committees 2.5. Organizational structures and structural evolution: Mintzberg's view 2.6. Hierarchical Line: Jaques' view 2.7. Organizational Structure vs processes 2.8. Networks
• 3 MOTIVATION 3.1. The human needs according to Maslow and Herzberg 3.2. Motivation and demotivation 3.3. The human work according to Jaques 3.4. Relationship between individual and organization 3.5. Psychological issues of delegation
• 4 ORGANIZATIONAL CULTURE 4.1. Spontaneous (local) groups 4.2. Development of a culture within a spontaneous group 4.3. Work teams 4.4. The organizational structure as an aggregate of groups, analysis of its culture
• 5 HUMAN RESOURCES MANAGEMENT AND DEVELOPMENT 5.1. Organizational functions related to H.R. management and development 5.2. Selecting, Evaluating, Educating, career and replacement planning 5.3. Compensation planning
• 6 MICROORGANIZATION 6.1. Organization Documentation 6.2. Documenting the organizational structure 6.3. Procedures and processes 6.4. Organizational analysis • ORGANIZATION AND ENTREPRENEURSHIP LABORATORY (choice of topics for group work; the first two topics are anyway treated; not treated topics are put out of program) – INFORMATION SYSTEMS 1. Organization and information integration 2. Information as empowering factor 3. Resourses, processes and informative flows 4. IT architectures and systems 5. Computing integration and ERP systems
– QUALITY SYSTEMS 1. The Quality concept and its historical evolution 2. From Quality Control to Total Quality, organization and tools 3. ISO9000 norms and certification 4. EFQM
– PRODUCT VS MARKET ANALYSIS 1. Strategy and strategic planning 2. Competitive Positioning, SBA and SBU 3. The Boston and Mc Kinsey growth–share matrixes, portfolio analysis 4. SWOT analysis
– PROCESSES 1. Process concept 2. Process modelling 3. Process evaluation 4. Process reengineering
– BUSINESS PLAN 1. Scopes and usefulness 2. Structure 3. Development 4. Contents and analysis tools
– AUTHORITY AND POWER 1. Authority and power concepts 2. Bureaucracies and boss-worker relation (Jaques) 3. Interactions within a social network with structure and roles (Jaques) 4. Basis, characteristics and practice of power in the organizations (Mintzberg) 5. Alliances
( reference books)
SLIDE PRESENTATIONS OF LECTURES INDIVIDUAL BIBLIOGRAPHIC SEARCHES
|
6
|
ING-INF/04
|
54
|
-
|
-
|
-
|
Core compulsory activities
|
ITA |
20810207 -
CONTROL MEASURES AND TECHNOLOGIES
(objectives)
Present the main aspects of the measures and technologies to build modern control systems based on transductors, data extraction and data processing. To present, in particular, processing of sensory data, estimation techniques for auto and cross-correlation, test signal generation, FFT based harmonic response estimation, as well as the techniques and components at the basis of the actuators of electric engines.
-
ULIVI GIOVANNI
( syllabus)
MKSA. Static and dynamic characteristics of the sensors. Calibration. Measurement chains. Sensors for kinematic quantities (position, speed, acceleration), notes on other sensors (load cells, temperature sensors, pressure sensors). Installation problems on the system. Electrical connection of sensors and measuring, shielding and insulation equipment. Interfacing with computers. Acquisition cards. An example of language for acquisition and processing of sensory data. Pretreatment (filtering, removal of the mean value). Measurement of the harmonic response. Self and mutual correlation functions, amplitude and power spectra. Time windows. Noise generators. Non-parametric identification: estimate of the harmonic response with the periodogram method for open and closed loop systems; estimation of the impulse response with deconvolution methods. Characteristics of electric drives with particular reference to brushless motors.
Laboratory activities Practice with common instruments. Connection of simple didactic systems to acquisition cards. Acquisition, treatment and visualization through Matlab of the resulting signals. Identification of simple didactic systems by implementing some of the techniques described and / or using dedicated software packages.
|
6
|
ING-INF/04
|
54
|
-
|
-
|
-
|
Core compulsory activities
|
ITA |
|
Optional group:
Curriculum Automazione dei Sistemi Complessi : Altre attività offerte (primo anno) e cfu a scelta libera dello studente - (show)
|
6
|
|
|
|
|
|
|
|
20810210 -
Laboratory di metodi decisionali
(objectives)
Provide students with skills necessary to conceive, develop and complete a complex Operations Research project. The teaching is characterized by a highly experimental approach and will take place at the “Automation and operations research in industry” Laboratory of the Department of Engineering
-
NICOSIA GAIA
( syllabus)
Mathematical modelling software and/or other software for the development of an individual project in decision-making
( reference books)
For ampl software: - https://ampl.com/resources/the-ampl-book/ - lecturer's slides For other softwares: - notes available on the web
|
3
|
MAT/09
|
27
|
-
|
-
|
-
|
Elective activities
|
ITA |
|