20810233 -
MATHEMATICAL ANALYSIS I
(objectives)
Allow the acquisition of the method deductive logic and provide the basic mathematical tools of the calculation of differential and integral. Each topic will be introduced and strictly the treaty, carrying, sometimes, detailed demonstrations, and also doing large reference to physical meaning, geometric interpretation and application number. Proper methodology and a reasonable skill in the use of the concepts of calculation and its entirety and differential results will put in grade students in principle to face so easy application more topics that will take place in the following courses.
-
PROCESI MICHELA
( syllabus)
Numerical sets (N, Z, Q and R), axiomatic construction of R, construction of N and principle of induction, complex numbers; elements of topology in R and Bolzano-Weierstrass theorem; real functions of real variable, limits of functions and their properties, limits of sequences, notable limits, the Napier number; continuous functions and their properties; derivative of functions and their properties, the fundamental theorems of differential calculus (Fermat, Rolle, Cauchy, Lagrange, de l'Hopital, Taylor's formula), convex / concave functions; function graph; Riemann integration and properties, integrability of continuous functions, fundamental theorem of integral calculus, integration by substitution and by parts, integration rules; numerical series, simple and absolute convergence, convergence criteria for series with positive terms and for series with any terms; Taylor series; improper integrals.
( reference books)
Analisi matematica I Marcellini-Sbordone Analisi matematica I Pagani-Salsa Esercitazioni di Matematica 1.1 e 1.2 Marcellini-Sbordone
-
BUSSINO SEVERINO ANGELO MARIA
( syllabus)
N and induction principle, Newton binomial; Z, integers modulo n; Q, axiomatic construction of R, Archimedean property, density of Q in R, powers with real exponent; complex numbers, polar representation and n-th roots of the unit; rudiments of topology of R (isolated and accumulation points, open / closed sets); real functions of a real variable, domain, co-domain, and inverse functions; Limits of functions and their properties, limits of monotone functions ; limits of sequences, significant limits, Nepero number, bridge theorem infinite series and convergence, geometric series, convergence tests for series with positive terms (comparison, asymptotic comparison, root, ratio, condensation) and for generic series (absolute convergence, Leibniz); continuous functions and their properties, continuity of elementary functions, types of discontinuities and monotone functions, fundamental theorems on continuous functions (zeros, intermediate values, Weierstrass); derivatives of a functions, derivatives of elementary functions, fundamental theorems of differential calculus (Fermat, Rolle, Cauchy, Lagrange, de l' Hospital, Taylor's formula), monotony and sign of the derivative , local maxima /minima, convex / concave functions; graph of a function; Riemann integral and its properties, integrability of continuous functions, primitive of elementary functions, I and II fundamental theorem of (integral) calculus; integration by substitution and by parts, rational functions, some special substitutions; improper integrals; Taylor series expansions, expansions of some elementary functions.
( reference books)
A. Laforgia, Calcolo differenziale e integrale, Ed. Accademica; P. Marcellini e C. Sbordone, Esercizi di Matematica, Vol. 1, tomi 1--4, Ed. Liguori;
|
12
|
MAT/05
|
108
|
-
|
-
|
-
|
Basic compulsory activities
|
ITA |
20801605 -
BASICS OF INFORMATICS
(objectives)
The main objective of the course is to provide the students with the methodological and conceptual tools for designing algorithms and implementing them into programs for the automatic solution of problems.
Specific objectives include: - to introduce computer science as the topic that studies how to automatically solve problems; - to introduce methodologies for the design of algorithms; - to introduce concepts, methodologies and fundamental techniques for programming.
At the end of the course students will be able to deal with a programming problem in all its aspects, namely: - understanding, analyzing, and formalizing the problem - designing iterative algorithms to solve the problem - encoding the algorithms in C by using suitable data structures and functions.
-
FRATI FABRIZIO
( syllabus)
The course "Fondamenti di Informatica" introduces basic concepts of computer science. The course discusses approaches and methodologies for the design of algorithms to automatically solve math problems. Further, the course shows methodologies for the design of programs and the implementation of algorithms. The main topics covered by the course are the following.
- Algorithms, input and output, flow charts, properties of the algorithms, algorithm's execution, conditional operators, control statements and loops, top-down design of algorithms, iterative problems and design of iterative algorithms.
- Introduction to programming, compiling and executing programs, binary representation of the information, variables, expressions, types, conditional operators, control statements, and loops in C, errors and exceptions, programming style, functions, parameter binding and return values, strings, arrays, implementation of algorithms on strings, arrays, and file.
( reference books)
Author: Bellini, Guidi Title: Linguaggio C - Una guida alla programmazione con elementi di Objective-C Edition: 5-th edition Editor: McGraw-hill Year: 2013
|
6
|
ING-INF/05
|
54
|
-
|
-
|
-
|
Basic compulsory activities
|
ITA |
Optional group:
comune Orientamento unico A SCELTA DELLO STUDENTE ING CIVILE - (show)
|
12
|
|
|
|
|
|
|
|
20801616 -
APPLIED GEOLOGY
(objectives)
IT PRESENTS AN OVERVIEW OF EARTH SCIENCES, ILLUSTRATING THE BASIC CONCEPTS OF GEOLOGY: THE FORM, MATERIALS, INTERNAL DYNAMICS, GEOLOGICAL CYCLES. IT PROVIDES THE BASIC TOOLS FOR READING AND INTERPRETATION OF GEOLOGICAL MAPS AT DIFFERENT SCALES. IT PROVIDES THE SKILLS NECESSARY TO INTERPRET THE GEOLOGICAL SURVEY. IT PROVIDES INFORMATION RELATING TO NATURAL HAZARDS, NATURAL RESOURCES AND ENVIRONMENTAL IMPACT
-
Derived from
20801616 GEOLOGIA APPLICATA in Ingegneria civile L-7 N0 MAZZA ROBERTO
( syllabus)
The course program includes the presentation and discussion of the following topics: Introduction to Geology: the uniqueness of planet Earth; aspects of geology, the Earth's crust - the processes affecting the surface (the model of the Earth's relief, the sedimentary processes, sedimentary rocks), the body of the Earth - the internal process (the interior of the Earth, the earthquakes, volcanic phenomena, igneous rocks, metamorphic rocks; lithogenetic cycle, plate tectonics) deformation of the crust (lithological succession, the deformation of rocks, the geometry of geological bodies ). The "craft" of the geologist: the geological survey (preliminary research, materials and methods, analysis and interpretation of geological maps, reading and interpretation of thematic maps), the geological-technical survey (principal physical and mechanical properties of earth and rocks, the geological exploration of subsoil). Engineering Geology: Slope instabilities; hydrogeology; study of the geological context related to planning issues (the geological hazard); first intervention on the territory; redevelopment (urban geology.)
( reference books)
JOHN P. GROTZINGER, THOMAS H. JORDAN – Capire la Terra – Edizione italiana a cura di Elvidio Lupia Palmieri e Maurizio Parotto – Zanichelli, Bologna LAURA SCESI, MONICA PAPINI, PAOLA GATTINONI – Principi di Geologia applicata – Casa Editrice Ambrosiana, Milano VARIOUS MATERIAL PROVIDED BY THE TEACHER
|
6
|
GEO/05
|
54
|
-
|
-
|
-
|
Elective activities
|
ITA |
20801617 -
MATERIALS FOR CIVIL ENGINEERING
(objectives)
THE AIM OF THE CLASS IS TO ACQUIRE THE KNOWLEDGE OF THE MATERIALS USED IN CIVIL ENGINEERING, TO PERFORM TESTS ON MATERIALS AND TO COMPREHEND THE ENVIRONMENTAL IMPACT FROM THEIR USE.
-
Derived from
20801617 MATERIALI PER L'INGEGNERIA CIVILE in Ingegneria civile L-7 N0 LANZARA GIULIA
( syllabus)
Introduction to Material Science and Technologies, snap-shots of continuum mechanics, Atomic bonds, Dislocations, Mechanical behavior of materials, Fracture, Materials for Civil Engineering (metals, polymers, concrete, composites, wood), Standards, An overview of new materials for Civil Engineering and of the new frontiers (intelligent materials, self-healing materials, nanocomposites etc.), Laboratory experience (Multifunctional Materials Laboratory)
( reference books)
lectures given during the course
W.D. Callister, Scienza e Ingegneria dei Materiali
|
6
|
ING-IND/22
|
54
|
-
|
-
|
-
|
Elective activities
|
ITA |
20801621 -
ENVIRONMENTAL HEALTH ENGINEERING
(objectives)
The main scope of the course is to provide students with the basic knowledge of environmental engineering. The course belongs to the three-year degree in Civil Engineering, whose aim is to prepare students in civil engineering by providing tools for the design, construction, maintenance and management of civil structures and infrastructures, such as buildings, bridges, tunnels, transport systems, hydraulic works and land protection. Road Materials is also a course of the master degrees in Road Infrastructures and Transport and Civil Engineering for Protection from Natural Risks, whose objective is training a highly professional figure in civil engineering with specific knowledge and skills in road infrastructures design and management and transportation issues and protection from hydrogeological and seismic risks, respectively. Within such framework, the course aims at providing students with the basic knowledge and understanding about 1) the biotic and abiotic environment, with references to ecology, chemistry and biology principles; 2) the reference environmental legislation; 3) water, atmosphere and soil quality parameters; 4) the processes of diffusion of pollutants in the environment; 5) treatment techniques. Upon successful completion of the course, students will be able to 1) evaluate the quality parameters of water, atmosphere and soil in relation to the current legislation 2) analyze the different engineering techniques of water, atmosphere and soil treatment in function of the type of pollutant; 3) basic knowledge of the integrated management of urban solid waste.
-
Derived from
20801621 INGEGNERIA SANITARIA-AMBIENTALE in Ingegneria civile L-7 N0 FIORI ALDO
( syllabus)
Chemestry and biology principles • Ecology • Water environment: water quality, water pollution, potabilization plants, waste water, waste water treatments. • Air pollution: pollutants and system for emission treatment • Solid waste: integrated waste management system, waste characteristics, collection systems, recovery operations, reuse and recycling, final disposal in a controlled landfill. • Reclamation of contaminated sites • Reference national laws (D.Lgs. 152/2006)
( reference books)
Ingegneria sanitaria-ambientale, Carlo Collivignarelli, Giorgio Bertanza, Città studi edizioni, 2012
|
6
|
ICAR/03
|
54
|
-
|
-
|
-
|
Elective activities
|
ITA |
20801979 -
GEOMATICS
(objectives)
FORMATIVE AIMS TO PROVIDE BASIC KNOWLEDGE ON MAJOR THEORETICAL, METHODOLOGICAL AND OPERATIONAL ISSUES INVOLVED IN SURVEYING, SO THAT THE STUDENT CAN ACQUIRE THE NECESSARY SKILLS TO DESIGN AND PERFORM A SURVEY AND TO PROCESS THE DATA RELATED TO IT. WE DISCUSS THE BASIC PRINCIPLES OF GEODESY AND CARTOGRAPHY, THE PRINCIPLES OF SURVEYING AND THE QUANTITIES THAT CAN BE MEASURED WITH THE TOPOGRAPHICAL INSTRUMENTS, BOTH TERRESTRIAL AND SATELLITE, THE SURVEY METHODS AND THE TREATMENT OF OBSERVATIONS.
|
6
|
ICAR/06
|
48
|
-
|
-
|
-
|
Elective activities
|
ITA |
20810070 -
SUSTAINABILITY AND ENVIRONMENTAL IMPACT
(objectives)
TO PROVIDE STUDENTS WITH KNOWLEDGE ON ENVIRONMENTAL IMPACTS OF HUMAN ACTIVITIES, TO CLASSIFY THE IMPACTS, TO ILLUSTRATE THE CONCEPT OF SUSTAINABILITY, TO DESCRIBE THE EVALUATION PROCEDURES OF ENVIRONMENTAL IMPACT AND ENVIRONMENTAL CERTIFICATION PROTOCOLS. ILLUSTRATE , THROUGH SIGNIFICANT CASE STUDIES, EXAMPLES OF ENVIRONMENTAL IMPACT ASSESSMENT AND OF IMPACTS MITIGATION.
-
Derived from
20810070 SOSTENIBILITA' E IMPATTO AMBIENTALE in Ingegneria elettronica per l'industria e l'innovazione LM-29 ASDRUBALI FRANCESCO
( syllabus)
Interdisciplinary characters of energy problems. Definition of the quantities and energy indices. Consumption, reserves and forecasts: the world's energy market, the Italian energy situation. Sustainable Development The international conference on climate and the environment: the Kyoto Protocol, the post-Kyoto, COP 21. The EU directives on energy, environment and climate. Sustainable development: definition, tools and methods. The Aalborg Chart, the Agenda 21 processes, the Covenant of Mayors. Environmental pollution environmental impact of energy systems, production and transport infrastructure. Air pollution: sources, pollutants, legislation, techniques for emissions control. The global pollution: acid rains, ozone depletion, greenhouse effect. Other forms of pollution: thermal pollution, noise, electromagnetic pollution environmental impact assessments The environmental impact assessment: legislation, procedures, methodologies, content and stages., Strategic Environmental Assessment. environmental footprint environmental footprint assessment procedures: Life Cycle Assessment; Social Life Cycle Assessment. Carbon Footprint and Water Footprint. environmental certification protocols environmental certification of productions: ISO 14000, EMAS, ecolabel. environmental sustainability protocols of buildings: LEED; BREEAM; ITHACA. Protocols of sustainability of University certification: Green Metric The Green Economy Definitions, areas of intervention, the Green Economy Manifesto. Outlines of incentive mechanisms in the Green Economy. Costs / benefits analysis. Applications and case studies Examples of environmental impact assessments and good sustainability practices.
( reference books)
Power point presentations will be made available in the Rome Tre Moodle system, as well as a list of suggested books
|
6
|
ING-IND/11
|
48
|
-
|
-
|
-
|
Elective activities
|
ITA |
20810106 -
SAFETY AT WORK AND ENVIRONMENTAL DEFENCE
(objectives)
Safety at work and environmental defence aims at providing knowledge and competences on safety at work in civil engineering construction activities, with specific focus on rules and laws and on the professional roles in the field. At the end of the course students shall be able of acting as coordinators safety measurements design and implementation according to the Italian laws.
-
Derived from
20810106 SICUREZZA E ORGANIZZAZIONE DEL LAVORO IN CANTIERE in Ingegneria civile L-7 ALFARO DEGAN GUIDO
( syllabus)
LEGAL FORM The Legislative Decree of the Government 81/2008 (Tit. I) and BS OHSAS 18001: 07, as basic legislation on safety and health at work. The DVR (Risk Assessment Document, art. 28) and art. 30, as tools for the design of the Company Management System on Health and Safety (SGSS). The SGSS and legislative compliance (Legislative Decree no. 81.08), continuous improvement and the "PDCA" principle of the Deming wheel. Training, awareness and competence. Consultation and communication. Operational control. Emergency preparedness and response. System performance, measurement, monitoring, audit and improvement. European regulations and their value; good technical standards; product directives. BS OHSAS 18001: 07 is the implementation of the SGSS as an effective tool to reduce the risks associated with health and safety in the workplace for employees, customers and interested parties. Data and case studies. Applications. The specific health and safety legislation on construction sites and work at height, the figures concerned, the Competent Bodies and the disciplinary discipline (Tit. IV Legislative Decree 81/08). The framework law on public works. Risk assessment techniques. Insights on Check List Analysis, JSA, FAST (Method of functional spaces), HAZOP, FMEA, FTA techniques. Applications and case studies. Exercises on the application of the BS OHSAS Standard Requirements to specific cases connected to mobile and temporary construction sites. System Audit Methods and Conformity Assessment. The "Production" method as a conformity assessment tool. Case studies, judgments on the application of the Safety Legislation. Literature and interpretation of incidental causes for historical events.
TECHNICAL FORM Construction site safety and organization (also relating to documentary obligations); specific treatment of health and safety risks on site (occupational diseases, excavations, demolitions, underground and tunnel works, noise, vibrations, environmental remediation, asbestos, manual handling of loads (MMdC), fire, etc.) ; prevention and protection measures, organizational procedures, risk prevention techniques during assembly, disassembly and installation of structures, vehicles and construction elements; the risk of falling from above, scaffolding and temporary works. Insights into occupational diseases related to work carried out in mobile and temporary construction sites; Accident material agents, exposure assessment methods. Practical applications. NIOSH and OCRA techniques for MMdC risk assessment and biomechanical overload of the upper limbs. Assessment of noise and vibration risk: exercises and applications; the asbestos risk, the remediation / demolition / safe treatment of MCA. Scaffolding and temporary works, construction techniques and safe management. Study cases.
METHODOLOGICAL / ORGANIZATIONAL / PRACTICAL MODULE The security and coordination plan (contents, criteria and methods, examples and project); the replacement safety plan; communication and cooperation techniques; the Operational Safety Plan and the Work Dossier; processing methods of the Pi.M.U.S. (Assembly, Use, Disassembly of scaffolding); methodological criteria for processing and managing the documentation; estimate of safety costs on site. Examples of PSC, area risk analysis, interference analysis and evaluation, the importance of planning and organization; tutorials and applications. Drafting of Operational Safety Plans (POS): practical meaning and differences with DVRs pursuant to art. 28, the evaluation of risks from interference and differences with the DUVRI (art. 26 Legislative Decree 81/08); exercises and case studies. Examples of Substitute Safety Plans (PSS); examples of Dossiers and practical applications based on the drafting of specific PSCs; judgments and sanctions regarding construction site safety; role simulations (Coordinator).
( reference books)
Lecture notes, texts, reference laws distributed in the classroom by the teacher
|
6
|
ING-IND/28
|
54
|
-
|
-
|
-
|
Elective activities
|
ITA |
20801626 -
DRAWING
(objectives)
PROVIDING ESSENTIAL KNOWLEDGE AND SKILLS FOR TECHNICAL DRAWING
|
6
|
ICAR/17
|
48
|
-
|
-
|
-
|
Elective activities
|
ITA |
|