Degree Course: Electronic engineering for industry and innovation
A.Y. 2020/2021
Autonomia di giudizio
Nell'ambito delle proprie competenze i laureati saranno in grado di assumere decisioni autonome in progetti anche di grandi dimensioni e di partecipare attivamente alle responsabilità di decisione in contesti multidisciplinari.
Tale obiettivo sarà perseguito tramite i corsi di insegnamento ad orientamento progettuale e la tesi di laurea magistrale e sarà verificato con gli esami di profitto e l'esame di laurea magistrale.Abilità comunicative
I laureati magistrali saranno in grado di comunicare in maniera efficace le proprie idee e interagire su argomenti e tematiche sia strettamente disciplinari che interdisciplinari, anche ad alto livello.
Tale obiettivo sarà perseguito attraverso gli esami, gli eventuali tirocinii e la prova finale di laurea e sarà verificato con gli esami di profitto e l'esame di laurea magistrale.Capacità di apprendimento
I laureati saranno in grado di aggiornarsi professionalmente in maniera autonoma, mentre gli studenti migliori e più motivati potranno procedere anche nel campo della ricerca scientifica.
Tale obiettivo sarà perseguito attraverso l'introduzione di componenti seminariali, di ricerca bibliografica e di elementi di ricerca scientifica all'interno di specifici corsi di insegnamento e attraverso la tesi di laurea magistrale.
Sarà verificato attraverso i relativi esami di profitto e l'esame di laurea magistrale.Requisiti di ammissione
Per l'accesso alla Laurea magistrale in Ingegneria elettronica per l'industria e l'innovazione è richiesto il possesso delle lauree di primo livello nelle Classi dell' Ingegneria dell'Informazione (di cui al D.M.509/1999 o D.M.270/2004) con riconoscimento integrale dei 180 crediti previsti nel piano di studi di primo livello.
Può avvenire anche a partire dalle lauree delle classi L-9 Ingegneria industriale e L-30 Scienze e tecnologie fisiche attraverso un'attenta valutazione del curriculum dello studente.
Le modalità per la verifica delle conoscenze richieste per l'accesso sono definite all'interno del Regolamento Didattico.
E' inoltre richiesto allo studente di essere capace di comunicare
efficacemente, in forma scritta e orale, in almeno una lingua europea diversa dall'italiano.
Il riconoscimento dell'idoneità linguistica è effettuato sulla base del superamento di prove di verifica effettuate presso il Centro Linguistico di Ateneo di Roma Tre o dellAteneo di provenienza, come specificato nel Regolamento Didattico del Corso di laurea Magistrale.Prova finale
La prova finale si realizza attraverso la presentazione e discussione di una relazione scritta avente per oggetto un progetto originale sviluppato dallo studente in modo autonomo sotto la guida di relatori e co-relatori nominati dal collegio didatticoOrientamento in ingresso
Il Collegio Didattico di Ingegneria Elettronica, struttura didattica competente per il presente Corso di Studio, svolge, in sinergia con il Dipartimento, intense attività di orientamento finalizzate sia all'incremento delle immatricolazioni sia a favorire lo sviluppo di una maggiore consapevolezza da parte degli studenti nel compiere scelte coerenti con le proprie conoscenze, competenze, attitudini e aspettative.
Il coordinamento è affidato all'Ufficio orientamento che elabora le attività di orientamento in entrata lavorando in stretta collaborazione con il Delegato del Rettore alle politiche di orientamento ed il GLOA (Gruppo di Lavoro per l'Orientamento di Ateneo).
L'ufficio cura i rapporti tra le scuole medie superiori e l'Università Roma Tre, coordina e realizza attività rivolte agli studenti, come il progetto Autorientamento e le Giornate di Vita Universitaria e partecipa alle manifestazioni di orientamento realizzate presso l'Ateneo, come Orientarsi a Roma Tre o esterne come il Salone dello studente.
Inoltre cura la redazione delle Guide dell'offerta formativa e il periodico di Ateneo, Roma Tre News.
Tali attività sono mirate agli immatricolandi delle Lauree di primo livello ma forniscono anche informazioni sui percorsi completi, includendo le Lauree Magistrali e i relativi obiettivi formativi, percorsi e sbocchi professionali.
In particolare, il CdS organizza con cadenza annuale una giornata di orientamento dedicata a illustrare ai potenziali studenti di Laurea Magistrale (studenti del secondo e terzo anno della Laurea Triennale in Ingegneria Elettronica, di cui il Collegio Didattico è struttura didattica competente) i percorsi formativi successivi e quindi a fornire un supporto per l'orientamento consapevole dello studente verso le lauree di secondo livello pertinenti, offerte dal Dipartimento (LM21, LM27, LM29).
Durante questi incontri, il coordinatore del CdS e docenti di riferimento illustrano il regolamento didattico ed il manifesto fornendo una panoramica sugli insegnamenti comuni a tutti gli studenti, i percorsi didattici e le attività a scelta dello studente.
E' inoltre fornito agli studenti materiale informativo a carattere divulgativo sotto forma di brochure che illustra le principali caratteristiche delle lauree e i relativi sbocchi professionali.
L'attività di orientamento qui illustrata è affiancata dall'utilizzo del sito web del collegio didattico ove è data evidenza al Regolamento didattico dei vari CdS.
Il sito web è costantemente aggiornato e video esplicativi dei differenti percorsi sono pubblicati a beneficio dello studente.Il Corso di Studio in breve
Obiettivo del Corso di Laurea Magistrale in Ingegneria elettronica per l'industria e l'innovazione è la formazione di una figura professionale capace di progettare, sviluppare, programmare e gestire tecnologie, componenti e sistemi elettronici nel vasto campo di applicazioni della moderna Ingegneria elettronica.
La figura professionale è quella di un laureato di alto livello che guarda al futuro ma anche alle necessità correnti dell'Industria elettronica, esperto dei singoli componenti, da cui dipende in modo critico la spinta innovativa, ma con una solida competenza anche a livello di sistema, da cui dipende la capacità di traduzione in applicazioni dei sistemi elettronici analogici e digitali.
Il Corso di Laurea si propone quindi di formare un ingegnere capace di progettare sistemi embedded a partire dalla definizione delle specifiche fino alla fase realizzativa dei prototipi; collaudare e verificare la sicurezza e l'affidabilità dei componenti e dei sistemi sviluppati; identificare e risolvere problemi di pianificazione, progettazione, ingegnerizzazione, produzione e monitoraggio delle prestazioni di componenti, dispositivi, apparati, sistemi e servizi in campo elettronico.
Questo ingegnere conosce le tecnologie dei dispositivi e le metodologie finalizzate all'innovazione dei processi produttivi e all'ottimizzazione delle applicazioni proprie dell'Ingegneria elettronica, ma ha anche la capacità di operare in settori di ricerca e sviluppo sia in ambito industriale che in enti di ricerca.
L'ingegnere elettronico per l'industria e l'innovazione è dunque preparato ad affrontare gli aspetti scientifici specifici dell'ingegneria moderna che, sempre più interdisciplinari, richiedono la conoscenza di dispositivi, sistemi e metodi basati su una tecnologia e una comprensione scientifica d'avanguardia oltre la padronanza delle relative metodologie di analisi e realizzazione.
Lo studente espliciterà le proprie scelte al momento della presentazione,
tramite il sistema informativo di ateneo, del piano di completamento o del piano di studio individuale,
secondo quanto stabilito dal regolamento didattico del corso di studio.
FIRST YEAR
First semester
Course
|
Credits
|
Scientific Disciplinary Sector Code
|
Contact Hours
|
Exercise Hours
|
Laboratory Hours
|
Personal Study Hours
|
Type of Activity
|
Language
|
20801707 -
CHEMISTRY OF TECHNOLOGY
(objectives)
The course has the task of increasing the knowledge in chemical process technology related to electronics, both well-established industrially but also more innovative ones.
|
6
|
CHIM/07
|
48
|
-
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20802050 -
CIRCUITS AND ELECTRICAL SYSTEMS
(objectives)
The course aims at providing students of the master degree the basic concepts of analysis methods of systems for the generation, the conversion and the transmission of electrical energy. The guiding principles of the design of systems and equipment for power electrical distribution and for hv and lv electrical installations are also treated.
|
9
|
ING-IND/31
|
72
|
-
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20810065 -
OPTICS AND QUANTUM ELECTRONICS
(objectives)
- to make the student familiar with the principal experimental results who led to the reformulation of physics needed in order for atomic phenomena to be adequately described; - to introduce students to the concept wave function and to Schroedinger's equation; - to provide those mathematical tools needed to solve some problems concerning simple quantum systems (potential well, harmonic oscillator); - to provide a quantum interpretation about the behaviour of some complex systems (like for instance hydrogen-like atoms, spin, field quantization, band theory, effective mass)
|
|
20810065-1 -
QUANTUM ELECTRONICS
(objectives)
- to make the student familiar with the principal experimental results who led to the reformulation of physics needed in order for atomic phenomena to be adequately described; - to introduce students to the concept wave function and to Schroedinger's equation; - to provide those mathematical tools needed to solve some problems concerning simple quantum systems (potential well, harmonic oscillator); - to provide a quantum interpretation about the behaviour of some complex systems (like for instance hydrogen-like atoms, spin, field quantization, band theory, effective mass)
|
6
|
FIS/03
|
48
|
-
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20810065-2 -
OPTICS
|
Also available in another semester or year
|
Second semester
Course
|
Credits
|
Scientific Disciplinary Sector Code
|
Contact Hours
|
Exercise Hours
|
Laboratory Hours
|
Personal Study Hours
|
Type of Activity
|
Language
|
20810110 -
ADVANCED ELECTROMAGNETICS
(objectives)
The course aims at learning advanced knowledge on the interaction between electromagnetic field and natural, artificial and living matter. This knowledge is useful for the analysis and design of electromagnetic systems oriented for applications in circuits, devices, and systems for electronics, bio-engineering and telecommunications.
|
9
|
ING-INF/02
|
72
|
-
|
-
|
-
|
Core compulsory activities
|
ENG |
20801888 -
POWER ELECTRONICS
(objectives)
Understanding configurations and operating characteristics of static power apparatus that use semiconductor devices for achieving the controlled conversion of electric energy. Learning how to use of electronic power converters in the main areas of application such as electrical drives, uninterrupted power supply (ups) systems, distributed generation of electric power from renewable sources and improved management of energy storage systems.
|
9
|
ING-IND/32
|
72
|
-
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20802093 -
PROGRAMMABLE ELECTRONIC SYSTEMS
(objectives)
The course allows the students to acquire the knowledge and the ability to apply design techniques for digital systems in general and in particular with programmable platforms. The course analyzes the typical structure and the technology of modern programmable electronic components, develops the ability to design a digital electronic system from specifications to implementation and experimental verification of the behavior, the ability to draft a technical report on the design and characterization of a component or digital electronic system.
|
9
|
ING-INF/01
|
72
|
-
|
-
|
-
|
Core compulsory activities
|
ITA |
20810065 -
OPTICS AND QUANTUM ELECTRONICS
(objectives)
- to make the student familiar with the principal experimental results who led to the reformulation of physics needed in order for atomic phenomena to be adequately described; - to introduce students to the concept wave function and to Schroedinger's equation; - to provide those mathematical tools needed to solve some problems concerning simple quantum systems (potential well, harmonic oscillator); - to provide a quantum interpretation about the behaviour of some complex systems (like for instance hydrogen-like atoms, spin, field quantization, band theory, effective mass)
|
|
20810065-1 -
QUANTUM ELECTRONICS
|
Also available in another semester or year
|
20810065-2 -
OPTICS
(objectives)
The course provides the students with tools for dealing with diffraction and propagation of optical fields, which are at the basis of opto-electronic and photonic applications. In such a context, it introduces and develops the concept of optical coherence and presents suitable techniques for solving propagation problems in vacuo and in materials.
|
6
|
FIS/03
|
48
|
-
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20810069 -
SOLID STATE MEASURING DEVICES
(objectives)
The student is expected to develop an understanding of the basic processes at the foundation of the solid-state devices, in order to understand the appropriate use and limitations of several families of measuring devices. The course introduces the basic properties of metals, semiconductors, dielectrics etc. that are at the heart of the correct operation of many solid-state sensors and measuring devices. On the basis of these general properties, the prominent features of solid-state sensors (for magnetic field, temperature, radiation,...) are described. Finally, some solid-state devices of interest to metrology are introduced.
|
9
|
ING-INF/07
|
72
|
-
|
-
|
-
|
Core compulsory activities
|
ITA |
Optional Group:
OPZIONALE - (show)
|
12
|
|
|
|
|
|
|
|
|
Optional Group:
Opzionali - (show)
|
9
|
|
|
|
|
|
|
|
|
SECOND YEAR
First semester
Second semester
Course
|
Credits
|
Scientific Disciplinary Sector Code
|
Contact Hours
|
Exercise Hours
|
Laboratory Hours
|
Personal Study Hours
|
Type of Activity
|
Language
|
Optional Group:
1 INSEGNAMENTO OBBLIGATORIO - (show)
|
9
|
|
|
|
|
|
|
|
20810068 -
ELECTRONIC DESIGN
(objectives)
The aim of this course is to provide the fundamentals of electronic design in terms of both synthesis and analysis methodologies. The course is focused on electronic system architecture for the processing of signals coming from and directed to output stages, after suitable analog to digital (A/D) and digital to analog (D/A) conversion. Particular attention will be dedicated to the analysis of front-end electronics and signal conditioning (amplification and, filtering), as well as frequency stability. Aim of the course also includes the definition of design specifications, both DC and AC, distortion and noise, as well as A/D and D/A conversion techniques. The course will be completed by a detailed analysis of a set of projects with applications in consumer electronics, telecommunications, industrial and medical electronics.
|
9
|
ING-INF/01
|
72
|
-
|
-
|
-
|
Core compulsory activities
|
ITA |
20810153 -
ANTENNAS AND PROPAGATION
|
Also available in another semester or year
|
|
Optional Group:
Opzionali - (show)
|
9
|
|
|
|
|
|
|
|
20802052 -
FUNDAMENTALS OF PHOTOVOLTAICS
(objectives)
The course provides basic understanding of physics and technology of photovoltaic devices, from first generation silicon solar cells (crystalline, polycrystalline, amorphous) to second (thin-films technology) and third generation (multi-junction) solar cells. The course deals with devices, modules and systems and includes an introduction to storage and distribution of solar energy. The objective is to provide the specific knowledge for the design, analysis and characterization of solar cells and systems. The course includes a number of laboratory experiments on solar cells and SPICE simulations
|
6
|
ING-INF/01
|
42
|
-
|
-
|
-
|
Core compulsory activities
|
ITA |
20810067 -
ELECTRONICS LABORATORY
(objectives)
Electronics Laboratory is an experimental lab course that provides the fundamentals of electronic design, simulation, construction, test and debugging of analog and digital electronic circuits. Lectures will be devoted to design strategies and methods. The intensive use of PSpice simulation will allow fast circuit verification before its fabrication. The course will include several measurement techniques to perform the experimental tests. Expected results are the ability to design electronic circuits for both analog and digital signal processing, the knowledge of the characteristics of the major electronic components and skills in the use of PSpice simulator, combined with the ability to measure electrical quantities with laboratory instrumentation.
|
6
|
ING-INF/01
|
42
|
-
|
-
|
-
|
Core compulsory activities
|
ITA |
20810068 -
ELECTRONIC DESIGN
(objectives)
The aim of this course is to provide the fundamentals of electronic design in terms of both synthesis and analysis methodologies. The course is focused on electronic system architecture for the processing of signals coming from and directed to output stages, after suitable analog to digital (A/D) and digital to analog (D/A) conversion. Particular attention will be dedicated to the analysis of front-end electronics and signal conditioning (amplification and, filtering), as well as frequency stability. Aim of the course also includes the definition of design specifications, both DC and AC, distortion and noise, as well as A/D and D/A conversion techniques. The course will be completed by a detailed analysis of a set of projects with applications in consumer electronics, telecommunications, industrial and medical electronics.
|
9
|
ING-INF/01
|
72
|
-
|
-
|
-
|
Core compulsory activities
|
ITA |
20810086 -
EXPERIMENTAL SUPERCONDUCTIVITY
|
Also available in another semester or year
|
20810138 -
ADVANCED ELECTROMAGNETIC COMPONENTS AND CIRCUITS
(objectives)
The course presents the design of electromagnetic components and circuits in modern and advanced applications, including wireless communications, circuits, microwave and optical components and devices, microwave communications and radar, power generation, transfer, and harvesting, with a special emphasis on the innovation brought by artificial electromagnetic materials and metamaterials.
|
6
|
ING-INF/02
|
48
|
-
|
-
|
-
|
Core compulsory activities
|
ENG |
20810153 -
ANTENNAS AND PROPAGATION
|
Also available in another semester or year
|
20810154 -
ADVANCED ANTENNA ENGINEERING
(objectives)
Antennas are fundamental components of modern wireless communication systems for smart environments such as pervasive systems for distributed information and computing, advanced space systems, intelligent transportation systems. This course aims at providing a selection of advanced topics in antenna engineering, including analytical and numerical techniques: theory and applications of periodic structures; resonant and traveling-wave antennas for terrestrial and space communication systems; smart and MIMO antenna arrays; numerical techniques based on differential formulations (finite differences in time and frequency) and on boundary integral formulations (method of moments); the main commercial CAD tools for antennas based on the above numerical techniques will also be illustrated.
|
9
|
ING-INF/02
|
72
|
-
|
-
|
-
|
Core compulsory activities
|
ENG |
20810155 -
METAMATERIALS
(objectives)
The course aims at learning the tools for the analysis and design of innovative high-tech devices based on the use of artificial electromagnetic materials and metamaterials.
|
9
|
ING-INF/02
|
63
|
-
|
-
|
-
|
Core compulsory activities
|
ENG |
20810202 -
MICRO AND NANOTECNOLOGY ELECTRONICS
|
Also available in another semester or year
|
20801928 -
OPTOELECTRONICS
|
Also available in another semester or year
|
20810203 -
OPTICS AND PHOTONICS OF SOLITONS
(objectives)
Introduction and concept, models and applications of optical solitons and solitary waves, with reference to temporal confinemnet of pulses and spatial confinement of light beams, for opto-optical processing and propagation of non-dispersive wavepackets. Experimental and application-oriented examples will be provided in optical fibers and liquid crystals. The modern electronics engineer will be able to understand and handle advanced generations of all-optical signal processors.
|
6
|
ING-INF/01
|
48
|
-
|
-
|
-
|
Core compulsory activities
|
ITA |
|
Optional Group:
OPZIONALE - (show)
|
12
|
|
|
|
|
|
|
|
20801920 -
STATIC POWER CONVERTORS DESIGN
(objectives)
The lessons will present dynamic modeling and methodologies for power electronic converters design. The students will face design problems with reference to technical specifications and required performances.
|
9
|
ING-IND/32
|
63
|
-
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20810070 -
SUSTAINABILITY AND ENVIRONMENTAL IMPACT
|
Also available in another semester or year
|
20810066 -
ELECTROTECHNICS FOR ENERGY SYSTEMS
(objectives)
The aim of the course is to discuss the main energy conversions to deliver, to manage and to storing electrical energy. The optimization of the different systems for enhancing efficiency and the environmental impact as weel as Renewable energies and the energy storage will be widely analyzed.
|
6
|
ING-IND/31
|
42
|
-
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20810085 -
SIMULATION METHODS FOR ELECTRONIC & ELECTRIC SYSTEMS
(objectives)
The course objective is to provide to students suitable lectures about scientific computing and procedures for electric and electronics applications, in order to understand and to design simulation software.
|
6
|
ING-IND/31
|
42
|
-
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20810156 -
Electroacoustics
|
Also available in another semester or year
|
20810216 -
ELECTRICAL ENERGY ENGINEERING
(objectives)
The student will be able to familiarize with the problems related to energy efficiency considering the energy needs of industrial users and the service sector. Information and methodologies will be provided to understand the issues of distributed generation regarding electricity generation from renewable sources, photovoltaic and wind, and the different energy storage systems. For the aforementioned systems, the problems that underlie the choices of the grid connection systems and the active systems to reduce the causes of pollution of the grid itself will be illustrated.
|
9
|
ING-IND/32
|
72
|
-
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
|
20802015 -
TRAINING
(objectives)
The student must carry out a period of training and orientation called internship, aimed at experimenting and developing the technical and methodological skills acquired during the studies, as well as facilitating professional choices, through the direct knowledge of the industrial reality.
|
3
|
|
-
|
-
|
-
|
-
|
Per stages e tirocini presso imprese, enti pubblici o privati, ordini professionali (art.10, comma 5, lettera e)
|
ITA |
20802113 -
ART. 10, COMMA 5, LETTERA D
|
3
|
|
-
|
-
|
-
|
-
|
Other activities
|
ITA |
20802091 -
FINAL EXAM
(objectives)
The Master's degree is awarded after passing a final exam, which consists in defending a written report (the Master's thesis) on a work activity developed by the candidate, under the guidance of a supervisor, and possibly of other co-supervisors, of an innovative nature, and concerning aspects of analysis and/or synthesis associated with topics relevant to the learning outcomes of the Master's degree program. The final exam aims to verify the candidate's level of learning of the technical and scientific contents, her/his ability to work independently, and her/his level of organisation, communication and innovation in the analysis and synthesis of complex projects. The activities carried out during the preparation of the thesis work may be performed in the University's laboratories and in companies or research bodies in Italy and abroad.
|
9
|
|
-
|
-
|
-
|
-
|
Final examination and foreign language test
|
ITA |
20810000 -
A SCELTA STUDENTE
|
12
|
|
72
|
-
|
-
|
-
|
Elective activities
|
ITA |