20801822 -
LABORATORY: AERODYNAMICS AND AEROACOUSTICS
(objectives)
The specific aim of this module is to achieve cognitive and practical skills in experimental aerodynamics applied to the aeronautic field and more generally to the industrial and environmental engineering fields.
Lectures are also focused on arguments that deal with the fundamental theory of aeroacoustics, including theoretical design problems. Practical exercises and experimental experiences in the department laboratory will deepen aspects related to noise measurements with particular attention on their application in the aeronautical field (ex.: compressible jets and wall flows ).
Having successfully complete the module, the student will be able to recognize, acquire and analyze aeroacoustics and aerodynamics problems with conventional and advanced instrumentation and elaboration techniques.
|
9
|
ING-IND/06
|
72
|
-
|
-
|
-
|
Core compulsory activities
|
ITA |
20801816 -
ANALYSIS OF AERONAUTICAL STRUCTURES
(objectives)
TO INTEGRATE AND TO COMPLETE THE STUDENTS KNOWLEDGE IN STRUCTURAL DYNAMICS, FOCUSING ON SPECIFIC PROBLEMS OF AIRCRAFT STRUCTURES AND ON NUMERICAL METHODS WIDELY USED FOR THEIR ANALYSIS. IN PARTICULAR, THE EMPHASIS WILL BE PLACED ON LINEAR AND NON-LINEAR MODELING OF AIRCRAFT STRUCTURES SUBJECT TO THE COMBINED ACTION OF THERMAL AND EXTERNAL LOADS. IN A FIRST STAGE, THE THEORY NECESSARY FOR THE MODELING OF SPECIFIC AIRCRAFT STRUCTURES PROBLEMS WILL BE PRESENTED AND THE BASIC THEORY OF FINITE ELEMENT METHODS WILL BE PROVIDED, WITH PARTICULAR ATTENTION TO AERONAUTICAL APPLICATIONS. IN A SECOND STAGE, THE STUDENT WILL BECOME FAMILIAR WITH FINITE ELEMENT CODES COMMONLY USED FOR STRUCTURAL DESIGN IN INDUSTRIES. THIS ACTIVITY WILL BE AIMED AT THE STRUCTURAL ANALYSIS OF ONE OF THE MOST IMPORTANT ELEMENTS OF THE AIRCRAFT (WING AND/OR FUSELAGE).
|
9
|
ING-IND/04
|
72
|
-
|
-
|
-
|
Core compulsory activities
|
ITA |
Optional Group:
comune Orientamento unico AD OBBLIGATORIE AFFINI - (show)
|
36
|
|
|
|
|
|
|
|
20801744 -
MATERIALS TECHNOLOGY FOR AERONAUTICS
|
Also available in another semester or year
|
20801817 -
ADVANCED AUTOMATIC CONTROLS STUDIES
(objectives)
STATE SPACE: INPUT-STATE REPRESENTATIONS, INTERCONNECTION OF SYSTEMS, TRANSITION MATRIX, EXPONENTIAL OF A MATRIX, FROM TRANSFER FUNCTION TO STATE SPACE AND VICE-VERSA, COORDINATE TRANSFORMATION, EGINEVALUES, MODAL ANALYSIS, STRUCTURAL PROPERTIES, ASYMPTOTIC OBSERVER, EIGENVALUES ASSIGNEMENT, SEMPARATION PRINCIPLE, OUTPUR REGULATION, OPTIMAL CONTROL. DISCETE TIME SYSTEMS: DISCRETE IMPLEMENTATION OF FEEDBACK CONTROL SYSTEM. HARDWARE CHARACTERISTICS, D/A AND A/D CONVERSION. SAMPLING AND RECONSTRUCTION, SHANNON THEOREM. DIFFERENCE EQUATIONS, Z TRANSFORM, MODES, STABILITY. APPROXIMATE METHODS. SYNTHESIS OF CONTROL SYSTEMS.
|
|
20801817-1 -
COMPLEMENTI DI CONTROLLI AUTOMATICI MODULO I
(objectives)
STATE SPACE: INPUT-STATE REPRESENTATIONS, INTERCONNECTION OF SYSTEMS, TRANSITION MATRIX, EXPONENTIAL OF A MATRIX, FROM TRANSFER FUNCTION TO STATE SPACE AND VICE-VERSA, COORDINATE TRANSFORMATION, EGINEVALUES, MODAL ANALYSIS, STRUCTURAL PROPERTIES, ASYMPTOTIC OBSERVER, EIGENVALUES ASSIGNEMENT, SEMPARATION PRINCIPLE, OUTPUR REGULATION, OPTIMAL CONTROL. DISCETE TIME SYSTEMS: DISCRETE IMPLEMENTATION OF FEEDBACK CONTROL SYSTEM. HARDWARE CHARACTERISTICS, D/A AND A/D CONVERSION. SAMPLING AND RECONSTRUCTION, SHANNON THEOREM. DIFFERENCE EQUATIONS, Z TRANSFORM, MODES, STABILITY. APPROXIMATE METHODS. SYNTHESIS OF CONTROL SYSTEMS.
|
6
|
ING-INF/04
|
48
|
-
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20801817-2 -
COMPLEMENTI DI CONTROLLI AUTOMATICI MODULO II
(objectives)
STATE SPACE: INPUT-STATE REPRESENTATIONS, INTERCONNECTION OF SYSTEMS, TRANSITION MATRIX, EXPONENTIAL OF A MATRIX, FROM TRANSFER FUNCTION TO STATE SPACE AND VICE-VERSA, COORDINATE TRANSFORMATION, EGINEVALUES, MODAL ANALYSIS, STRUCTURAL PROPERTIES, ASYMPTOTIC OBSERVER, EIGENVALUES ASSIGNEMENT, SEMPARATION PRINCIPLE, OUTPUR REGULATION, OPTIMAL CONTROL. DISCETE TIME SYSTEMS: DISCRETE IMPLEMENTATION OF FEEDBACK CONTROL SYSTEM. HARDWARE CHARACTERISTICS, D/A AND A/D CONVERSION. SAMPLING AND RECONSTRUCTION, SHANNON THEOREM. DIFFERENCE EQUATIONS, Z TRANSFORM, MODES, STABILITY. APPROXIMATE METHODS. SYNTHESIS OF CONTROL SYSTEMS.
|
3
|
ING-INF/04
|
24
|
-
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20801821 -
INTERACTIONS BETWEEN MACHINES AND THE ENVIRONMENT
(objectives)
ACQUISITION OF BASIC KNOWLEDGE ABOUT POLLUTANTS FORMATION IN POWER PLANT AND MOTOR VEHICLE; ACQUISITION OF TOOLS FOR AIR POLLUTION MODELING. ACQUISITION OF ADVANCED KNOWLEDGE TO ANALYZE SOURCES IN LIGHT OF THEIR POLLUTANTS EMISSIONS; ACQUISITION OF SKILLS NECESSARY TO MEASURE AND CONTROL THE EMISSIONS IN ATMOSPHERE (PRE-COMBUSTION, COMBUSTION AND POST-COMBUSTION CONTROLS).
|
9
|
ING-IND/08
|
72
|
-
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20801825 -
TURBOMACHINES
(objectives)
THE AIM OF THE COURSE IS TO PROVIDE STUDENTS WITH PRELIMINARY DESIGN PROCEDURES AND CRITERIA FOR TURBOMACHINES. (FROM GAS, STEAM, AND HYDRAULIC TURBINES TO PUMPS, FANS, BLOWERS AND COMPRESSORS). MOVING FROM PERFORMANCE TARGETS AND SPECIFIC DESIGN BOUNDARY CONDITIONS, THE STUDENT WILL LEARN SOME SIMPLIFIED DESIGN METHODOLOGIES TAKING MATERIAL, MECHANICAL AND THERMAL STRESSES, TRANSONIC FLOW LIMITS AND CAVITATION INTO ACCOUNT. THE OPTIMIZATION OF THE DEGREE OF FREEDOM WILL BE IMPLEMENTED IN THE DESIGN PROCEDURES. THE STUDENT WILL BE ABLE TO ANALYSE MACHINE PERFORMANCE ONCE THE MAIN GEOMETRIC QUANTITIES ARE GIVEN.
|
9
|
ING-IND/08
|
72
|
-
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20801835 -
INTERNAL COMBUSTION ENGINES
|
Also available in another semester or year
|
20801838 -
OLEODYNAMICS AND PNEUMATICS
(objectives)
ACQUISITION OF BASIC KNOWLEDGE ABOUT THE FUNCTIONAL CHARACTERISTICS, IN STEADY STATE, THE HYDRAULIC AND PNEUMATIC COMPONENTS OF INTEREST FOR INDUSTRIAL ENGINEERING. ACQUISITION OF SKILLS NEEDED FOR THE DESIGN OF HYDRAULIC AND PNEUMATIC ARCHITECTURE COMPLEX AND HIGHLY INTEGRATED WITH ELECTRICAL COMPONENTS AND SYSTEMS MANAGEMENT IN PROGRAMMABLE LOGIC. REFINEMENT AND CONSOLIDATION OF KNOWLEDGE FOR THE IDENTIFICATION OF THE DYNAMIC BEHAVIOR OF COMPONENTS AND HYDRAULIC SYSTEMS AND FOR THE STABILITY ANALYSIS OF MECHANICAL, HYDRAULIC AND ELECTRICAL INTEGRATED SYSTEMS.
|
9
|
ING-IND/08
|
72
|
-
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20801715 -
MACHINES AND ELECTRIC OPERATIONS
(objectives)
The course has the purpose to describe the manufacturing features and the functional characteristics of the main rotating electrical machines, including dynamic models used for the study of the electrical machine behavior in electromechanical systems. It is expected that the student will acquire the ability to select the various electromechanical equipment used in industrial applications or in power systems for the production of the electric energy. The course gives basic knowledge concerning the main configurations of the power electronic converters that are used for the control of power supply of electrical machines as well as it gives basic knowledge of the main algorithms being used in electric drives for control and monitoring of the machine performance; as a result, the course is targeted to give know how concerning how to identify the main design characteristics of an electric drive in connection with the functional specification of a given application.
|
9
|
ING-IND/32
|
72
|
-
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
|