20410408 -
AL310 - ELEMENTS OF ADVANCED ALGEBRA
|
Also available in another semester or year
|
20410407 -
AC310 - Complex analysis
(objectives)
To acquire a broad knowledge of holomorphic and meromorphic functions of one complex variable and of their main properties. To acquire good dexterity in complex integration and in the calculation of real definite integrals.
|
9
|
MAT/03
|
48
|
24
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20410409 -
AM310 - ELEMENTS OF ADVANCED ANALYSIS
|
Also available in another semester or year
|
20410410 -
FM310 - Equations of Mathematical Physics
(objectives)
To acquire a good knowledge of the elementary theory of partial differential equations and of the basic methods of solution, with particular focus on the equations describing problems in mathematical physics.
|
9
|
MAT/07
|
48
|
24
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20410411 -
GE310 - ELEMENTS OF ADVANCED GEOMETRY
|
Also available in another semester or year
|
20410412 -
MC310 - Fundaments of Complementary Mathematics
|
Also available in another semester or year
|
20410445 -
AL410 - COMMUTATIVE ALGEBRA
(objectives)
Acquire a good knowledge of some methods and fundamental results in the study of the commutative rings and their modules, with particular reference to the study of ring classes of interest for the algebraic theory of numbers and for algebraic geometry.
|
9
|
MAT/02
|
48
|
24
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20410413 -
AN410 - NUMERICAL ANALYSIS 1
|
Also available in another semester or year
|
20410446 -
BL410-Introduction to Biology
|
Also available in another semester or year
|
20410439 -
CH410 - ELEMENTS OF CHEMISTRY
|
Also available in another semester or year
|
20410447 -
CP410 - Theory of Probability
|
Also available in another semester or year
|
20410415 -
CR410-Public Key Criptography
|
Also available in another semester or year
|
20410416 -
FM410-Complements of Analytical Mechanics
(objectives)
To deepen the study of dynamical systems, with more advanced methods, in the context of Lagrangian and Hamiltonian theory.
|
|
20410416-1 -
FM410-Complements of Analytical Mechanics - MODULE A
(objectives)
To deepen the study of dynamical systems, with more advanced methods, in the context of Lagrangian and Hamiltonian theory.
|
3
|
MAT/07
|
30
|
-
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20410416-2 -
FM410-Complements of Analytical Mechanics - Module B
(objectives)
To deepen the study of dynamical systems, with more advanced methods, in the context of Lagrangian and Hamiltonian theory.
|
3
|
MAT/07
|
30
|
-
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20410448 -
FS410 - DIDACTICS OF PHYSICS WORKSHOP
(objectives)
Learn statistical and laboratory techniques for the preparation of didactic physics experiments.
|
6
|
FIS/08
|
48
|
12
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20410449 -
GE410 - ALGEBRAIC GEOMETRY 1
|
Also available in another semester or year
|
20410450 -
GL410-Elements of Geology I
|
Also available in another semester or year
|
20410417 -
IN410-Computability and Complexity
|
Also available in another semester or year
|
20410451 -
LM410 -THEOREMS IN LOGIC 1
(objectives)
To acquire a good knowledge of first order classical logic and its fundamental theorems.
|
|
20410451-1 -
LM410 -THEOREMS IN LOGIC 1 - Module A
|
Also available in another semester or year
|
20410451-2 -
LM410 -THEOREMS IN LOGIC 1 - Module B
|
Also available in another semester or year
|
20410418 -
MA410 - APPLIED AND INDUSTRIAL MATHEMATICS
(objectives)
Present a number of problems, of interest for application in various scientific and technological areas. Deal with the modeling aspects as well as those of numerical simulation, especially for problems formulated in terms of partial differential equations.
|
9
|
MAT/08
|
48
|
24
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20410452 -
ME410 - ELEMENTARY MATHEMATICS FROM AN ADVANCED POINT OF VIEW
(objectives)
Illustrate, using a critical and unitary approach,ÿsome interesting and classical results and notions that are central for teaching mathematics in high school (focussing, principally, on arithmetics, geometry and algebra). The aim of the course is also to give a contribution to teachers training through the investigation on historical, didactic and cultural aspects of these topics.
|
6
|
MAT/04
|
48
|
12
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20410438 -
MF410 - Computational Finance
(objectives)
Basic knowledge of financial markets, introduction to computational and theoretical models for quantitative finance, portoflio optimization, risk analysis. The computational aspects are mostly developed within the Matlab environment.
|
9
|
SECS-S/06
|
60
|
-
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20410419 -
MS410-Statistical Mechanics
(objectives)
To acquire the mathematical basic techniques of statistical mechanics for interacting particle or spin systems, including the study of Gibbs measures and phase transition phenomena, and apply them to some concrete models, such as the Ising model in dimension d = 1,2 and in the mean field approximation.
|
9
|
MAT/07
|
48
|
24
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20410440 -
ST410-Introduction to Statistics
|
Also available in another semester or year
|
20410453 -
TN410 - INTRODUCTION TO NUMBER THEORY
(objectives)
Acquire a good knowledge of the concepts and methods of the elementary number theory, with particular reference to the study of the Diophantine equations and congruence equations. Provide prerequisites for more advanced courses of algebraic and analytical number theory.
|
9
|
MAT/02
|
48
|
24
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20410420 -
AN420 - NUMERICAL ANALYSIS 2
(objectives)
Introduce to the study and implementation of more advanced numerical approximation techniques, in particular related to approximate solution of ordinary differential equations, and to a further advanced topic to be chosen between the optimization and the fundamentals of approximation of partial differential equations.
|
9
|
MAT/08
|
48
|
24
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20410441 -
CP420-Introduction to Stochastic Processes
(objectives)
Introduction to the theory of stochastic processes. Markov chains: ergodic theory, coupling, mixing times, with applications to random walks, card shuffling, and the Monte Carlo method. The Poisson process, continuous time Markov chains, convergence to equilibrium for some simple interacting particle systems.
|
6
|
MAT/06
|
48
|
12
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20410436 -
FS420 - QUANTUM MECHANICS
|
Also available in another semester or year
|
20410442 -
IN420 - Information Theory
(objectives)
Introduce key questions in the theory of signal transmission and quantitative analysis of signals, such as the notions of entropy and mutual information. Show the underlying algebraic structure. Apply the fundamental concepts to code theory, data compression and cryptography.
|
9
|
INF/01
|
48
|
24
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20410454 -
GL420-Elements of Geology II
(objectives)
The course aims to provide an adequate overview of the scientific contents of Earth Sciences. The course deals with the modern aspects of Earth Sciences, framing geological phenomena in the framework of the most modern theories and illustrating the hazards and risks associated with natural phenomena such as, for example, seismic and volcanic phenomena, also referring to the geology of the Italian territory. The course also aims to provide the basis for understanding the rocks cycle and their rocks genetic processes through laboratory and field experiences. During the didactical laboratories and field excursions students will learn to understand the different aspects of Italian territory, with particular regard to its environmental value e fragility.
|
6
|
GEO/03
|
48
|
-
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20410455 -
LM420 - THEOREMS IN LOGIC 2
(objectives)
To support the students into an in-depth analysis of the main results of first order classical logic and to study some of their remarkable consequences.
|
6
|
MAT/01
|
36
|
-
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20410456 -
MC420-Dydactics of Mathematics
(objectives)
1. Critical analysis of the evolution of ideas and methodologies in teaching mathematics, with particular emphasis on the role of the teacher. 2. The mathematics curriculum in compulsory schooling and in the various secondary schools (high schools, technical schools and trade schools), in an international context. 3. Didactic planning and methodologies for teaching mathematics: programming and rhythm, principles and methods for the construction of activities, classroom management. 4. Problem solving. Logic, intuition and history in teaching mathematics.
|
6
|
MAT/04
|
48
|
12
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20410469 -
AM430 - ELLITTIC PARTIAL DIFFERENTIAL EQUATIONS
|
Also available in another semester or year
|
20410421 -
AN430- Finite Element Method
|
Also available in another semester or year
|
20410457 -
CP430 - STOCHASTIC CALCULUS
|
Also available in another semester or year
|
20410444 -
GE430 - RIEMANNIAN GEOMETRY
(objectives)
Introdue to the study of Riemannian geometry, in particular by addressing the theorems of Gauss-Bonnet and Hopf-Rinow.
|
6
|
MAT/03
|
48
|
12
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20410437 -
FS430- Theory of Relativity
(objectives)
Make the student familiar with the theoretical underpinnings of General Relativity, both as a geometric theory of space-time and by stressing analogies and differences with the field theories based on local symmetries that describe the interactions among elementary particles. Illustrate the basic elements of differential geometry needed to correctly frame the various concepts. Introduce the student to extensions of the theory of interest for current research.
|
6
|
FIS/02
|
48
|
-
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20410422 -
IN430 - ADVANCED COMPUTING TECHNIQUES
(objectives)
Acquire the conceptualskills in structuring problems according to the object-oriented programming paradigm. Acquire the ability to design algorithmic solutions based on the object-oriented paradigm. Acquire the basic concepts related to programming techniques based on the object-oriented paradigm. Introduce the fundamental notions of parallel and concurrent programming.
|
6
|
INF/01
|
48
|
12
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20410458 -
LM430 - LOGICAL THEORIES 2
(objectives)
To acquire the basic notions of Zermelo-Fraenkel's axiomatic set theory and present some problems related to that theory.
|
6
|
MAT/01
|
36
|
-
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20410459 -
MC430 - LABORATORY: DIDACTICS FOR MATHEMATICS
(objectives)
1. Mathematics software, with particular attention to their use for teaching mathematics in school. 2. Analysis of the potential and criticality of the use of technological tools for teaching and learning mathematics.
|
6
|
MAT/04
|
48
|
12
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20410435 -
FS440 - Data Acquisition and Experimental Control
(objectives)
The lectures and laboratories allow the student to learn the basic concepts pinpointing the data acquisition of a high energy physics experiment with specific regard to the data collection, control of the experiment and monitoring.
|
6
|
FIS/04
|
60
|
-
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20410423 -
IN440 - COMBINATORIAL OPTIMISATION
(objectives)
Acquire skills on key solution techniques for combinatorial optimization problems; improve the skills on graph theory; acquire advanced technical skills for designing, analyzing and implementing algorithms aimed to solve optimization problems on graphs, trees and flow networks.
|
9
|
INF/01
|
48
|
24
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20410460 -
AM450 - FUNCTIONAL ANALYSIS
(objectives)
To acquire a good knowledge of functional analysis: Banach and Hilbert spaces, weak topologies, linear and continuous operators, compact operators, spectral theory.
|
6
|
MAT/05
|
48
|
12
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20410465 -
GE450 - TOPOLOGIA ALGEBRICA
|
Also available in another semester or year
|
20410424 -
IN450 - ALGORITHMS FOR CRYPTOGRAPHY
(objectives)
Acquire the knowledge of the main encryption algorithms. Deepen the mathematical skills necessary for the description of the algorithms. Acquire the cryptanalysis techniques used in the assessment of the security level provided by the encryption systems.
|
6
|
INF/01
|
48
|
12
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20410461 -
FS460 - Dydactics of Physics
(objectives)
The objectives of the course are to enable the students to acquire the necessary skills to practice an affective teaching of Physics in the secondary school, with particular attention to: a) knowledgeÿof literature research on Physic teaching; the Italian educational system and school regulations; b) the design of culturally significant educational paths for Physics teaching; c) the production of materials for the measurement and verification of learning through the exercise of formative evaluation; d) the role of the "laboratory" as a way of working that involves students in an active and participated way, which encourages experimentation and planning.
|
6
|
FIS/08
|
48
|
-
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20410425 -
GE460- GRAPH THEORY
(objectives)
Provide tools and methods for graph theory.
|
6
|
MAT/03
|
48
|
12
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20410426 -
IN480 - PARALLEL AND DISTRIBUTED COMPUTING
|
Also available in another semester or year
|
20410427 -
IN490 - PROGRAMMING LANGUAGES
|
Also available in another semester or year
|
20410428 -
CR510 – ELLIPTIC CRYPTOSYSTEMS
(objectives)
Acquire a basic knowledge of the concepts and methods related to the theory of public key cryptography using the group of points of an elliptic curve on a finite field. Apply the theory of elliptic curves to classical problems of computational number theory such as factorization and primality testing.
|
6
|
MAT/02
|
48
|
12
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20410470 -
FM510 - MATHEMATICAL PHYSICS APPLICATIONS
(objectives)
To apply methods and tools of mathematical physics to some classes of models of dynamical systems and statistical mechanics, through both theoretical lectures and numerous practical exercises carried out in the computer lab.
|
9
|
MAT/07
|
48
|
24
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20410429 -
FS510 - MONTECARLO METHODS
|
Also available in another semester or year
|
20410462 -
GE510 - ALGEBRAIC GEOMETRY 2
(objectives)
Introduce to the study of algebraic geometry, with particular emphasis on beams, schemes and cohomology.
|
6
|
MAT/03
|
48
|
12
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20410463 -
TN510 - NUMBER THEORY
(objectives)
Provide a good knowledge of concepts and methods of analytical theory of numbers, with particular concern to the theory of prime numbers and prime numbers in arithmetic progression.ÿIntroduce to Riemann's zeta function theory.
|
6
|
MAT/02
|
48
|
12
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20410464 -
IN530 - COMPUTER INFORMATION SYSTEMS
(objectives)
Introduce the basic concepts of security and then show how to acquire autonomy in updating the understanding in the data and networks security domain. Provide the basic concepts for understanding and evaluating a security solution. Provide the basic knowledge to produce security solutions for small/medium-sized system.
|
6
|
INF/01
|
48
|
12
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20410431 -
IN540 - COMPUTATIONAL TOPOLOGY
(objectives)
Introduce the study of computational topology and in particular the concepts, representations and algorithms for topological and geometric structures to support geometric modeling, construction of simulations meshes, and scientific visualization. Acquire techniques for parallel implementation in the representation and processing of large-sized graphs and complexes. Application of sparse matrices, for the implementation of algorithms on graphs and complexes with linear algebraic methods.
|
6
|
INF/01
|
48
|
12
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20410432 -
IN550 – MACHINE LEARNING
|
Also available in another semester or year
|
20410434 -
FS450 - Elements of Statistical Mechanics
(objectives)
Gain knowledge of fundamental principles of statistical mechanics for classical and quantum systems.
|
6
|
FIS/02
|
60
|
-
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20410443 -
FS520 - Complex systems
(objectives)
To understand algorithms related to complex systems, writing, executing and optimising simulation programs of such systems (Montecarlo and molecular dynamics programs) and analysing the data produced by simulations.
|
6
|
FIS/03
|
48
|
12
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20410518 -
AM420 - SOBOLEV SPACES AND PARTIAL DERIVATIVE EQUATIONS
(objectives)
To acquire a good knowledge of the general methods andÿclassical techniques necessary for the study ofÿweak solutions of partial differential equations.
|
6
|
MAT/05
|
48
|
12
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20410520 -
AL420 - ALGEBRAIC THEORY OF NUMBERS
(objectives)
Acquire methods and techniques of modern algebraic theory of numbers through classic problems initiated by Fermat, Euler, Lagrange, Dedekind, Gauss, Kronecker.
|
6
|
MAT/02
|
48
|
12
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20410523 -
MA430 - MATHEMATICAL METHODS FOR APPLIED SCIENCES
(objectives)
The purpose of this Course is presenting a few typical topics of Mathematics especially useful for Physics and Engineering. These are the theory of analytic functions, Hilbert spaces, Fourier series, Fourier and Laplace transforms.
|
6
|
MAT/05
|
-
|
-
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20410522 -
CP450 - DISCRETE PROBABILITY
(objectives)
Development of probabilistic techniques and advanced methods for the study of stochastic processes on graphs, randomized algorithms and random graphs, random walks and interacting particle systems.
|
6
|
MAT/06
|
48
|
12
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20410524 -
GE520 - ADVANCED GEOMETRY
(objectives)
Acquire up-to-date and advanced skills on topics chosen within the research themes of contemporary geometry
|
6
|
MAT/03
|
48
|
12
|
-
|
-
|
Related or supplementary learning activities
|
ITA |
20410529 -
LM510 - LOGICAL THEORIES 1
(objectives)
Address some questions of the theory of the proof of the twentieth century, in connection with the themes of contemporary research
|
6
|
MAT/01
|
36
|
-
|
-
|
-
|
Related or supplementary learning activities
|
ITA |