ISTITUZIONI DI MATEMATICHE 1
(obiettivi)
Fornire gli strumenti concettuali e metodologici per reperire l'informazione trasmessa dal linguaggio formalizzato e deduttivo proprio della matematica. Fornire i fondamenti dell'analisi matematica e della geometria piana orientati verso la comprensione dei modelli fisico-matematici. Argomenti del corso sono: il calcolo differenziale in una variabile ed i primi cenni del calcolo integrale; i relativi concetti, strumenti e istanze modellistiche; l'algebra lineare analizzata da un punto di vista geometrico.
|
Codice
|
21010183 |
Lingua
|
ITA |
Tipo di attestato
|
Attestato di profitto |
Crediti
|
6
|
Settore scientifico disciplinare
|
MAT/07
|
Ore Aula
|
75
|
Attività formativa
|
Attività formative di base
|
Canale: CANALE I
Docente
|
BRISCESE FABIO
(programma)
Quantificatori. I numeri: naturali, interi, razionali, reali. Assiomi dei numeri reali. Irrazionalità di radice di 2. Coordinate cartesiane nel piano e nello spazio; i piani coordinati. Punti e vettori. Distanza: definizione formale. Valore assoluto. Densità di Q in R. Distanza nel piano e nello spazio. Equazione della circonferenza e della sfera. Algebra lineare (in 2 e 3 dimensioni): pendenza di un segmento, somma di vettori, prodotto scalare e prodotto vettoriale. Equivalenza della formulazione geometrica ed in coordinate. Condizioni di parallelismo e ortogonalità.
Introduzione alle funzioni. Grafico di una funzione nei tre piani coordinati. Operazioni con i grafici. Insiemi aperti e chiusi, punti di accumulazione, definizioni ed esempi. Definizione di limite. Operazioni con i limiti, limiti di quozienti di polinomi. Asintoti. Teorema del confronto. Limiti notevoli.
Funzioni continue (continuità in un punto e in un intervallo). Teoremi sulle funzioni continue: esistenza del massimo e del minimo, valori intermedi. Funzioni esponenziale e logaritmo.
Derivate: definizione, significato geometrico. Operazioni con le derivate: somma, prodotto, quoziente, moltiplicazione per una costante. Tecniche di derivazione, derivate delle principali funzioni. Equazione della retta tangente in un punto al grafico. Derivata di una funzione composta e delle funzioni inverse. Punti stazionari. Teorema di Fermat. Teoremi di Rolle e Lagrange. Monotonia e segno della derivata prima. Approssimazione lineare.
Derivate seconde, concavità, flessi. Studio completo di funzione. Teoremi di Cauchy e De l’Hopital. Problemi modellistici e di ottimizzazione. Polinomio di Taylor. Formula del resto di Lagrange nel caso n=2. Introduzione agli integrali: integrali indefiniti e definiti. Il problema del calcolo dell'area di una regione piana. Il teorema della media integrale. Il teorema fondamentale del calcolo integrale. Integrazione per parti e sostituzione.
Introduzione all’utilizzo di software matematici per graficare le funzioni.
(testi)
Testi
James Stewart, Calcolo. Funzioni di una variabile, Apogeo Education - Maggioli Editore.
Robert A. Adams Calcolo Differenziale I ed. CEA (Casa Editrice Ambrosiana)
Bramanti, Pagani, Salsa “Analisi Matematica 1. Con elementi di geometria e algebra lineare”, Zanichelli
Bibliografia
James Stewart, Calcolo. Funzioni di una variabile, Apogeo Education - Maggioli Editore.
Robert A. Adams Calcolo Differenziale I ed. CEA (Casa Editrice Ambrosiana)
Bramanti, Pagani, Salsa “Analisi Matematica 1. Con elementi di geometria e algebra lineare”, Zanichelli
Courant, Robbins "Che Cos' è La Matematica?" Ed. Boringhieri
|
Date di inizio e termine delle attività didattiche
|
Dal 01/10/2024 al 28/02/2025 |
Modalità di erogazione
|
Tradizionale
|
Modalità di frequenza
|
Obbligatoria
|
Metodi di valutazione
|
Prova scritta
Prova orale
|
Canale: CANALE II
Docente
|
PAPPALARDI FRANCESCO
(programma)
Quantificatori. I numeri: naturali, interi, razionali, reali. Assiomi dei numeri reali. Irrazionalità di radice di 2. Coordinate cartesiane nel piano e nello spazio; i piani coordinati. Punti e vettori. Distanza: definizione formale. Valore assoluto. Densità di Q in R. Distanza nel piano e nello spazio. Equazione della circonferenza e della sfera. Algebra lineare (in 2 e 3 dimensioni): pendenza di un segmento, somma di vettori, prodotto scalare e prodotto vettoriale. Equivalenza della formulazione geometrica ed in coordinate. Condizioni di parallelismo e ortogonalità.
Introduzione alle funzioni. Grafico di una funzione nei tre piani coordinati. Operazioni con i grafici. Insiemi aperti e chiusi, punti di accumulazione, definizioni ed esempi. Definizione di limite. Operazioni con i limiti, limiti di quozienti di polinomi. Asintoti. Teorema del confronto. Limiti notevoli.
Funzioni continue (continuità in un punto e in un intervallo). Teoremi sulle funzioni continue: esistenza del massimo e del minimo, valori intermedi. Funzioni esponenziale e logaritmo.
Derivate: definizione, significato geometrico. Operazioni con le derivate: somma, prodotto, quoziente, moltiplicazione per una costante. Tecniche di derivazione, derivate delle principali funzioni. Equazione della retta tangente in un punto al grafico. Derivata di una funzione composta e delle funzioni inverse. Punti stazionari. Teorema di Fermat. Teoremi di Rolle e Lagrange. Monotonia e segno della derivata prima. Approssimazione lineare.
Derivate seconde, concavità, flessi. Studio completo di funzione. Teoremi di Cauchy e De l’Hopital. Problemi modellistici e di ottimizzazione. Polinomio di Taylor. Formula del resto di Lagrange nel caso n=2. Introduzione agli integrali: integrali indefiniti e definiti. Il problema del calcolo dell'area di una regione piana. Il teorema della media integrale. Il teorema fondamentale del calcolo integrale. Integrazione per parti e sostituzione.
Introduzione all’utilizzo di software matematici per graficare le funzioni.
(testi)
James Stewart, Calcolo. Funzioni di una variabile, Apogeo Education - Maggioli Editore.
Robert A. Adams Calcolo Differenziale I ed. CEA (Casa Editrice Ambrosiana)
Bramanti, Pagani, Salsa “Analisi Matematica 1. Con elementi di geometria e algebra lineare”, Zanichelli
Bibliografia
James Stewart, Calcolo. Funzioni di una variabile, Apogeo Education - Maggioli Editore.
Robert A. Adams Calcolo Differenziale I ed. CEA (Casa Editrice Ambrosiana)
Bramanti, Pagani, Salsa “Analisi Matematica 1. Con elementi di geometria e algebra lineare”, Zanichelli
Courant, Robbins "Che Cos' è La Matematica?" Ed. Boringhieri
|
Date di inizio e termine delle attività didattiche
|
Dal 01/10/2024 al 28/02/2025 |
Modalità di erogazione
|
Tradizionale
|
Modalità di frequenza
|
Non obbligatoria
|
Metodi di valutazione
|
Prova scritta
Prova orale
|
|
|