Docente
|
BIASCO LUCA
(programma)
1. Integrale di Riemann in Rn
Ripasso sull’integrale di Riemann in una dimensione. Rettangoli in R2, funzioni a supporto compatto, funzioni semplici e loro integrale, definizione di funzione integrabile secondo Riemann in R2 (quindi Rn). Definizione di insieme misurabile, un insieme è misurabile se e solo se la sua frontiera ha misura nulla. Insiemi normali rispetto agli assi cartesiani. Una funzione continua su un insieme misurabile `e integrabile. Teorema di riduzione di Fubini. Formula del cambio di variabile negli integrali (senza dim.). Coordinate polari, cilindriche, sferiche. Esempi: calcolo di alcuni baricentri e momenti di inerzia.
2. Curve regolari Curve regolari in R^n. Versore tangente. Due curve equivalenti percorse nello stesso verso hanno lo stesso versore tangente. Lunghezza di una curva. E’ maggiore dello spostamento Due curve equivalenti hanno la stessa lunghezza. Integrali curvilinei.
3. Superfici, flussi e teorema della divergenza. Richiami sul prodotto vettoriale. Definizione di superficie regolare. Piano tangente e versore normale. Area di una superficie. Esempi: grafici di funzioni e superfici di rotazione. Integrali superficiali. Flusso di un campo vettoriale attraverso una superficie. Esempi. Enunciato del teorema della divergenza. Dimostrazione del teorema della divergenza (per domini normali rispetto ai tre assi cartesiani.
4. Forme differenziali e lavoro. 1-Forme differenziali. Integrale di una 1-Forma differenziale (lavoro di un campo vettoriale), forme chiuse ed esatte. Una forma è esatta se e solo se l’integrale su una qualsiasi curva chiusa nullo. Esempio di forma chiusa non esatta. Derivate sotto segno di integrale. Insiemi stellati; una forma chiusa su un dominio stellato è esatta. Campi irrotazionali e conservativi, solenoidali e potenziale vettore (su insiemi stellati). Il teorema di Green nel piano. Il teorema del Rotore.
5. Serie e successioni di funzioni Serie e successioni di funzioni: convergenza puntuale, uniforme e totale. Continuità del limite, integrazione e derivazione di successioni di funzioni uniformemente convergenti. Serie di potenze: raggio di convergenza. Esempi di serie di Taylor di funzioni elementari.
6. Serie di Fourier Serie di Fourier, coefficienti di Fourier. Proprietà dei coefficienti di Fourier, disuguaglianza di Bessel, Lemma di Riemann Lebesgue. Convergenza puntuale della serie di Fourier (test del Dini). Convergenza totale nel caso di funzioni C1. Uguaglianza di Parseval.
(testi)
Analisi Matematica II, Giusti Analisi Matematica II, Chierchia
|