Fruisce da
|
20410421 AN430 - METODO DEGLI ELEMENTI FINITI in Scienze Computazionali LM-40 TERESI LUCIANO
(programma)
L'obiettivo del corso è presentare il Metodo degli Elementi Finiti (MEF), uno dei metodi più utilizzati nel panorama delle tecniche numeriche per la soluzione di problemi scientifici basati su sistemi di equazioni differenziali alle derivate parziali.
Gli studenti impareranno a utilizzare software per il calcolo scientifico basato sul MEF, e acquisiranno le competenze per implementare e risolvere alcuni problemi campione tipici della meccanica dei solidi, dei fluidi, e della fisica dei mezzi continui.
Il corso tratterà il MEF sia dal punto di vista teorico che pratico, illustrando gli strumenti per la soluzione numerica delle equazioni classiche della fisica matematica, quali le equazioni ellittiche, iperboliche e paraboliche.
1. La Cassetta degli attrezzi La regola di Leibniz e il teorema della divergenza. La derivata debole. La nozione di funzioni generalizzate; la “delta” e il gradino. Le funzione lisce a supporto compatto; le funzioni di saggio. Nozione di funzionale lineare, forma lineare e forma bilineare. Spazi funzionali, prodotto interno, norma e distanza. Teorema di rappresentazione di Riesz. Esempio prototipo di legge di bilancio. Il primo problema modello: il laplaciano e l’equazione del calore. Il secondo problema modello: la meccanica dei solidi. La formulazione debole del problema differenziale. Condizioni al contorno essenziali, naturali e miste. Relazioni tra formulazione debole, forte e variazionale.
2. Il Metodo di Galierkin Esempio base: laplaciano in 1D. Funzioni di forma lineari e quadratiche. Assemblaggio della matrice di rigidezza e del vettore dei carichi. Confronto elementi finiti e differenze finite. Condizioni al bordo in forma debole e metodo dei moltiplicatori di Lagrange.
3. Il Metodo degli Elementi Finiti. Esempio base: laplaciano in 2D. Griglie triangolari. Funzioni di forma lineari a tratti. Funzioni di forma quadratiche e cubiche. Triangoli di Lagrange di ordine arbitrario. Griglie quadrilatere.
4. Analisi della convergenza Approssimazione di funzioni lisce con funzioni lineari a tratti. Raffinamento della griglie. Convergenza nella norma energia; convergenza nella norma L2.
5. Soluzione delle equazioni degli elementi finiti Matrici sparse. Metodi di soluzione diretta. Fattorizzazione di Cholesky. Precondizionamento, metodi iterative, iterazioni di Jacobi. Gradiente Coniugato (GC). Basi gerarchiche. Cenno la Metodo multigriglia. Metodi adattativi. Raffinamento locale delle griglie. Stima degli errori.
6. Problemi di trasporto. Implementazione e soluzione di problemi di diffusione-convenzione. Criterio di Friederick-Lax-Courant. Stabilità delle soluzioni. Cenno ai metodi di stabilizzazione delle oscillazioni. Problemi di trasporto del tipo reazione-diffusione.
7. Meccanica dei Solidi Implementazione e soluzione di problemi campione della meccanica dei solidi; Elasticità lineare; materiali isotropi e non isotropi. Problemi di vibrazioni. Onde Elastiche.
8. Meccanica dei fluidi Esempi campione di problemi di fluidodinamica numerica. Equazione di Navier-Stokes.
(testi)
1) Integral Form at a Glance, note a cura del docente
2) When functions have no value(s): Delta functions and distributions Steven G. Johnson, MIT course 18.303 notes, 2011
3) Understanding and Implementing the Finite Elements Method Mark S. Gockenbach, SIAM, 2006 Cap. 1 Some model PDE’s Cap. 2 The weak formo of a BVP Cap. 3 The Galerkin method Cap. 4 Piecewise polynomials and the finite element method (sections 4.1, 4.2) Cap. 5 Convergence of the finite element method (sections 5.1 ~ 5.4)
|