Docente
|
CAPUTO PIETRO
(programma)
EQUAZIONI DIFFERENZIALI.
Equazioni differenziali lineari del I ordine; Equazioni differenziali generali del primo ordine; il problema di Cauchy: esistenza e unicità locale; equazioni differenziali a variabili separabili; sistemi lineari del I ordine; equazioni differenziali lineari di ordine generico; soluzioni linearmente indipendenti e determinante Wronskiano; metodo di variazione delle costanti; equazioni lineari a coefficienti costanti e polinomio caratteristico; sistemi lineari del I ordine con matrice dei coefficienti costante; esponenziale di matrici e calcolo per matrici diagonalizzabili; altre equazioni differenziali notevoli: equazione di Bernoulli e di Eulero.
CALCOLO DIFFERENZIALE IN PIU’ VARIABILI. Norma e distanza in R^n; funzioni continue; teorema di Weierstrass; derivate parziali, gradiente e derivate direzionali; funzioni C^1 e C^2; derivate successive, matrice Hessiana e Teorema di Schwarz; derivazione di funzioni composte; sviluppo di Taylor al II ordine; massimi/minimi locali; metodo dei moltiplicatori di Lagrange e massimi/minimi assoluti su insiemi compatti.
CALCOLO INTEGRALE IN PIU’ VARIABILI. Integrazione secondo Riemann; misura di Peano-Jordan, integrazione di funzioni continue; formula di riduzione e integrali iterati (teorema di Fubini); cambiamento di variabili negli integrali e matrice Jacobiana; coordinate polari, cilindriche, sferiche; cenni sugli integrali impropri.
CURVE E SUPERFICI. Curve in R^n ; cambi di parametrizzazione; curve equivalenti e verso; lunghezza di una curva; superfici regolali in R^3; area di una superficie; superfici orientate e superfici con bordo.
CAMPI VETTORIALI. Lavoro; integrali curvilinei di un campo vettoriale; campi conservativi ed irrotazionali; equivalenza tra campi conservativi ed irrotazionali su insiemi semplicemente connessi; formula di Gauss-Green; formula di Stokes.
(testi)
Bertsch, Dal Passo, Giacomelli, Analisi Matematica (McGraw Hill, II edizione)
Esercizi: Marcellini, Sbordone, Esercitazioni di Analisi Matematica Due (vol. I e vol. II). Zanichelli ed.
|