20402086 FM310 - FISICA MATEMATICA 2 in Matematica L-35 N0 PELLEGRINOTTI ALESSANDRO, Cava Giulia Rosalba
(programma)
Cauchy su tutta la retta. Principio del mas- simo. Applicazione del principio del massimo per dimostrare il teorema di unicita’ e teoremi di confronto. Unicita’ su tutta la retta. Problema in un segmento: separazione delle variabili. Studio di vari casi di condizioni iniziali e al bordo. Studio dell’equazione del calore con termini di sorgente e condizioni al bordo nulle. Studio dell’equazione del calore con condizioni al bordo arbitrarie. Introduzione alle equazioni ellittiche. Coordinate sferiche e polari. Formula di rappresen- tazione tramite la formula di Green. Proprieta’ delle fuzioni armoniche. Principio del massimo. Risultati unicita’ problema interno. Teoremi di confronto. Studio del caso del cerchio. For- mula di Poisson. Formulazione problema esterno. Teoremi di unicita’ nel piano e nello spazio. Problema esterno relativo al cerchio. Funzione di Green. Soluzione in una sfera. Soluzione in un semispazio. Teoria del potenziale. Potenziale volumetrico in 2 e 3 dimensioni. Esistenza e derivabilita’ del potenziale volumetrico. Calcolo del Laplaciano sul potenziale volumetrico. Introduzione alla Meccanica quantistica. Equazione di Schroedinger. Separazione di varia- bili. Particella libera in un intervallo. Barriera di potenziale. Oscillatore armonico. Atomo di idrogeno.
(testi)
A.N. Tichonov, A.A. Samarskij Equazioni della Fisica Matematica Edizioni MIR
|