Mutua da
|
20402107 GE510 - GEOMETRIA ALGEBRICA 2 in Matematica LM-40 N0 LOPEZ ANGELO
(programma)
Teoria dei fasci e suo utilizzo in ambito schematico
Prefasci e fasci, fascio associato a un prefascio, relazione tra iniettività e biettività sulle spighe e analoghe proprietà sulle sezioni. La categoria degli spazi anellati. Schemi. Esempi. Prodotti fibrati. Fasci algebrici su uno schema. Fasci quasi-coerenti e fasci coerenti.
Coomologia dei fasci
Algebra omologica nella categoria dei moduli su un anello. Fasci fiacchi. La coomologia dei fasci utilizzando la risoluzione canonica con fasci fiacchi.
Coomologia dei fasci quasi-coerenti e coerenti su uno schema.
Coomologia di Cech e coomologia ordinaria. Coomologia dei fasci quasi-coerenti su uno schema affine. La coomologia dei fasci O(n) sullo spazio proiettivo. Fasci coerenti sullo spazio proiettivo. Caratteristica di Eulero-Poincaré.
Fasci invertibili e sistemi lineari
Incollamento di fasci. Fasci invertibili e loro descrizione. Il gruppo di Picard. Morfismi in uno spazio proiettivo. Sistemi lineari. Punti base. Sistemi lineari e fasci ampi e molto ampi. Criterio di ampiezza.
(testi)
Note Prof. Sernesi R. Hartshorne, Algebraic geometry, Graduate Texts in Math. No. 52. Springer-Verlag, New York-Heidelberg, 1977. D. Eisenbud, J. Harris: The Geometry of Schemes, Springer Verlag (2000). U. Gortz, T. Wedhorn: Algebraic Geometry I, Viehweg + Teubner (2010).
|