Derived from
|
20410413 AN410 - NUMERICAL ANALYSIS 1 in Mathematics L-35 FERRETTI ROBERTO
(syllabus)
Linear Systems Direst methods: Gaussian elimination. Pivoting strategies. Gaussian elimination as a factorization. Doolittle and Choleshy factorizations. Iterative methods: Jacobi, Gauss-Seidel, SOR, Richardson, and related convergence results. Comparison of direct vs iterative solvers. Stability of algorithms for the solution of linear systems.
Iterative Methods for Scalar Nonlinear Equations The intermediate zero theorem. The algorithms of bisection, Newton, secants, chords, and related convergence results. (Reference: Chapter 1 excluding Section 1.2.3, and Appendices A.1, A.2)
Approximation of Functions General approximation strategies. Interpolating polynomial in Lagrange and Newton form. Representation of the interpolation error. Convergence of the interpolating polynomial for analytic functions. Refinement strategies in interpolation: Chebyshev nodes, composite approximations. Error estimates. Hermite polynomial, construction and representation of the error. Least Squares approximations. (Reference: Chapter 5 excluding Section 5.2, and Appendix A.4)
Numerical Integration General principles of numerical integration. Polya's Theorem on the convergence of interpolatory quadrature formulae. Closed and open Newton-Cotes formulae. Stability results and error estimation. Generalized Newton-Cotes formulae and their convergence. Gaussian quadratures and their convergence. (Reference: Chapter 6)
Laboratory Activity C language coding of some of the major algorithms, and in particular: Gaussian elimination, iterative methods for linear systems and scalar equations, Lagrange/Newton interpolation with a refinement strategy.
N.B.: References are provided with respect to the course notes.
(reference books)
Roberto Ferretti, "Appunti del corso di Analisi Numerica", available from the course page
Roberto Ferretti, "Esercizi d'esame di Analisi Numerica", available from the course page
Slides of the lessons, available from the course page
|