Teacher
|
DI MARCO ALESSANDRO
(syllabus)
Fundamentals: Mechanics of fluids: Incompressible and compressible conservation laws, dimensional analysis, asymptotic solutions. Sound Field; Wave equation for fluids, speed of sound and acoustic energy; Diffraction; Geometrical acoustics; waves in solids; Sound frequency analysis; Decibel and Sound Pressure Level; Acoustic Filters; Sound fields summation; Interference and frequency contents.
Wind tunnels: low speed, high speed and anecoich.
Waves equation Wave equation in a field without sources; Simple and harmonic solutions; Sound Intensity; Energy and specific energy; waves reflection and transmission; Sound generation and transmission mechanisms. Sound sources: Monopole; Dipole; Quadrupole.
Digital signal processing and probability fundamentals.
Acoustic measurement facilities Anechoic chambers; reverberant chambers.
Quantitative measures of sound Mathematics fundamentals; Fourier analysis; Measurements systems; acoustic sources characterization by means of microphone measurements.
Experimental techniques for turbulent flows measurements Hot wire anemometry. Single and multi components; Laser Doppler Anemometry; Particle Image Velocimetry; Laser Induced Fluorescence.
Optical methods for the analysis of density fields Interferometry, Schlieren, Shadowgraph.
Measurements in aerodynamic wind tunnels Pitot tube, pressure transducers, mass flow rate meters, thermal measurements with thermocouples; force measurements with dynamometric balances, acoustic measurements.
(reference books)
Lecture notes.
|