Teacher
|
LELLI CHIESA MARGHERITA
(syllabus)
Vector spaces and subspaces. Matrices. Row by column multiplication. Gaussian elimination and homogenous linear systems. Generators of a vector space end linearly independent vectors. Basis and dimension of a vector space. Grassmann Formula. Rank of a matrix and invertible matrices. Rouché-Capelli Theorem and solutions of a linear system. Determinant. Linear maps. Kernel and image of a linear map. The nullity plus rank theorem. Matrix associated to a linear map. Change of basis. Dual vector space and transpose of a linear map. diagonalization of linear operators. Minimal polynomial. Jordan canonical form.
(reference books)
Marco Manetti, Algebra lineare, per matematici. Serge Lang, Algebra Lineare, Bollati Boringhieri. Edoardo Sernesi, Geometria I, Bollati Boringhieri.
|