Derived from
|
20810262 Deep Learning in Computer science and engineering LM-32 GASPARETTI FABIO
(syllabus)
Introduction to DL; Training of Deep Architecture: hyperparameter tuning, batch normalization, faster optimizers, regularization ; Convolutional Neural Networks (CNN/ConvNets); Recurrent Neural Networks (GRU, LSTM, Bidirectional); Encoder-Decoder, Autoencoders, Variational Autoencoders; Attention layers ; Generative Adversarial Networks (GAN); Deep Reinforcement Learning; Embeddings; Use cases: AlexNet, VGG, NiN, GoogLeNet/Inception, ResNet, DenseNet; Use cases: Computer Vision and NLP
(reference books)
Simon J.D. Prince. "Understanding Deep Learning". MIT Press Dec 5th 2023 A. Geron, “Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems”, O'Reilly Media, Inc, USA, 2019.
|