Derived from
|
20410627 TN410 - INTRODUCTION TO NUMBER THEORY in Mathematics LM-40 PAPPALARDI FRANCESCO, TALAMANCA VALERIO
(syllabus)
Division, Factorization, Some Elementary Properties of Primes, Some Results and Problems Concerning Primes. ARITHMETIC FUNCTIONS: The Divisor Function. The Moebius Function. The Euler Function. Dirichlet Convolution CONGRUENCES: Sets of Residues,Some Interesting Congruences, Some Linear Congruences, Some Polynomial Congruences, Primitive Roots, the Theorem of Gauss. QUADRATIC RESIDUES: The Legendre Symbol. Quadratic Reciprocity. The Jacobi Symbol.The Distribution of Quadratic Residues. SUMS OF INTEGER SQUARES: Sums of Two Squares. Number of Representations. Sums of Four Squares. Sums of Three Squares. ELEMENTARY PRIME NUMBER THEORY: Euclid's Theorem Revisited. The Von Mangoldt Function. Tchebycheff's Theorem. Some Results of Mertens
(reference books)
Chen, W; ELEMENTARY NUMBER THEORY. https://rutherglen.science.mq.edu.au/wchen/lnentfolder/lnent.html Chowdhury, F.; Chowdhury, M. R. Essentials of Number Theory. Pi Publications, Dhaka, Bangladesh, 2005. ISBN 984-32-2836-7 Hardy, G. H.; Wright, E. M. An introduction to the theory of numbers. Fifth edition. The Clarendon Press, Oxford University Press, New York, 1979. xvi+426 pp. ISBN: 0-19-853170-2; 0-19-853171-0 Davenport, H. Aritmetica superiore. Un'introduzione alla teoria dei numeri. Editore: Zanichelli, 1994. 199 pp. ISBN: 8808091546
|