(objectives)
To deepen the study of dynamical systems both with more advanced methods, in the context of Lagrangian and Hamiltonian theory and providing applications also in other fields
|
Code
|
20410085 |
Language
|
ITA |
Type of certificate
|
Profit certificate
|
Credits
|
3
|
Scientific Disciplinary Sector Code
|
MAT/07
|
Contact Hours
|
30
|
Type of Activity
|
Elective activities
|
Teacher
|
REUVERS Robin Johannes Petrus
(syllabus)
Euler angles. Euler's equations for rigid body dynamics. Integrability of the rigid body with a point not subjected to forces. Lagrange spinning top. Ergodic, chaotic and mixing systems. Action angle variables: the theorem of Arnold-Liouville. Perturbation theory in classical mechanics: precession of the perihelion of Mercury and hints at the KAM theory.
(reference books)
V.I. Arnol’d, Metodi Matematici della Meccanica Classica, Editori Riuniti, Roma, 1979 G. Gallavotti, Meccanica Elementare, ed. P. Boringhieri, Torino, 1986 G. Gentile, Introduzione ai sistemi dinamici, 1 (Equazioni differenziali ordinarie, analisi qualitativa e alcune applicazioni) e 2 (Meccanica lagrangiana e hamiltoniana) L.D. Landau, E.M. Lifshitz, Meccanica, Editori Riuniti, Roma, 1976
|
Dates of beginning and end of teaching activities
|
From to |
Delivery mode
|
Traditional
|
Attendance
|
not mandatory
|
Evaluation methods
|
Written test
Oral exam
|
Teacher
|
MARCELLI GIOVANNA
(syllabus)
Ergodic, chaotic and mixing systems. Euler angles. Analysis of the dynamics for rigid body. Study of dynamics of the Lagrange spinning top and heavy spinning top. Gradient systems.
(reference books)
V.I. Arnol’d, Metodi Matematici della Meccanica Classica, Editori Riuniti, Roma, 1979 G. Gallavotti, Meccanica Elementare, ed. P. Boringhieri, Torino, 1986 G. Gentile, Introduzione ai sistemi dinamici, 1 (Equazioni differenziali ordinarie, analisi qualitativa e alcune applicazioni) e 2 (Meccanica lagrangiana e hamiltoniana) L.D. Landau, E.M. Lifshitz, Meccanica, Editori Riuniti, Roma, 1976
|
Dates of beginning and end of teaching activities
|
From to |
Delivery mode
|
Traditional
|
Attendance
|
not mandatory
|
Evaluation methods
|
Written test
Oral exam
|
|
|