Derived from
|
20410420 AN420 - NUMERICAL ANALYSIS 2 in Computational Sciences LM-40 FERRETTI ROBERTO
(syllabus)
Ordinary Differential Equations Finite difference approximation for ordinary differential equations: Euler's method. Consistency, stability, absolute stability. Second order Runge-Kutta methods. Single step implicit methods: backward Euler and Crank-Nicolson methods. Convergence of single step methods. Multi-step methods: general structure, complexity, absolute stability. Stability and consistency of multi-step methods. Adams methods, BDF methods, Predictor-Corrector methods. (Reference: Chapter 7 of curse notes "Appunti del corso di Analisi Numerica")
Partial Differential Equations Finite difference approximation for partial differential equations. Semi-discrete approximations and convergence. The Lax-Richtmeyer theorem. Transport equation: the method of characteristics. The "Upwind" (semi-discrete and fully-discrete) scheme, consistency and stability. Heat equation: Fourier approximation. Finite difference scheme, consistency and stability. Poisson equation: Fourier approximation. Finite difference scheme, convergence. (Reference: notes by R. LeVeque, "Finite Difference methods for differential equations", selected chapters 1, 2, 3, 12, 13)
(reference books)
Roberto Ferretti, "Appunti del corso di Analisi Numerica", in pdf on the course page
Roberto Ferretti, "Esercizi d'esame di Analisi Numerica", in pdf on the course page
Lecture slides in pdf on the course page
Additional notes provided by the teacher
|