Derived from
|
20410773 IN570 – Quantum Computing in Computational Sciences LM-40 PEDICINI MARCO
(syllabus)
Basic Linear Algebra: Hilbert Spaces, Products and Tensor Products, Matrices, Complex Spaces and Inner Products, Matrices, Graphs, and Sums Over Paths. Boolean Functions, Quantum Bits, and Feasibility: Feasible Boolean Functions, Quantum Representation of Boolean Arguments Quantum Feasibility. Special Matrices: Hadamard Matrices, Fourier Matrices, Reversible Computation and Permutation Matrices, Feasible Diagonal Matrices, Reflections. Tricks: Start Vectors, Controlling and Copying Base States, The Copy-Uncompute Trick, Superposition Tricks, Flipping a Switch, Measurement Tricks, Partial Transforms. Algorithms: Phil’s Algorithm: Phil Measures Up, Quantum Mazes versus Circuits versus Matrices. Deutsch’s Algorithm: Superdense Coding and Teleportation. The Deutsch-Jozsa Algorithm. Simon’s Algorithm. Shor’s Algorithm, Quantum Part of the Algorithm, Analysis of the Quantum Part, Continued Fractions. FactoringIntegers: Basic Number Theory, Periods Give the Order, Factoring. Grover’s Algorithm: The binary case, the general case, with k Unknowns, Grover Approximate Counting. QuantumWalks: Classical Random Walks, Random Walks and Matrices, Defining Quantum Walks, Interference and Diffusion.
(reference books)
Richard J. Lipton, Kenneth W. Regan Introduction to Quantum Algorithms via Linear Algebra, Second Edition, ISBN 9780262045254, (2021), MIT Press;
|