AM220 - MATHEMATICAL ANALYSIS 4
(objectives)
I. To acquire technics and methods regarding inverse and implicit functions in R^n with applications to constrained problems. II. To acquire a good knowledge of the concepts and methods in the classical integration theory on R^n, and, in particular, on curves and surfaces in R^3 with corresponding applications in Physics.
|
Code
|
20410586 |
Language
|
ITA |
Type of certificate
|
Profit certificate
|
Credits
|
9
|
Scientific Disciplinary Sector Code
|
MAT/05
|
Contact Hours
|
48
|
Exercise Hours
|
30
|
Type of Activity
|
Core compulsory activities
|
Teacher
|
BIASCO LUCA
(syllabus)
Constrained maxima and minima, Lagrange multipliers.
Ordinary differential equations Examples: equations with separable variables, linear systems with constant coefficients (solution with matrix exponential). Existence and uniqueness theorem. Linear systems, structure of solutions, wronskian, variation of constants.
Riemann integral in Rn Review of the Riemann integral in one dimension. Rectangles in R2, compact support functions, simple functions and their integral, function definition integrable according to Riemann in R2 (hence Rn). Definition of measurable set, a set is measurable if and only if its boundary has zero measurement. Normal sets with respect to the Cartesian axes. A continuous function on a measurable and integrable set. Fubini reduction theorem. Formula of change of variable in integrals (without size). Polar, cylindrical, spherical coordinates. Examples: calculation of some barycenters and moments of inertia.
Regular curves. Regular curves in R ^ n. Tangent versor. Two equivalent curves traveled in the same direction have the same tangent versor. Length of a curve. It is greater than the displacement. Two equivalent curves have the same length. Curvilinear integrals.
Surfaces, flows and divergence theorem. Recalls on the vector product. Definition of regular surface. Tangent plane and normal versor. Area of a surface. Examples: graphs of functions and rotation surfaces. Surface integrals. Flow of a vector field through a surface. Examples. Statement of the divergence theorem. Demonstration of the divergence theorem (for normal domains with respect to the three Cartesian axes.
Differential forms and work. 1-Differential forms. Integral of a 1-differential form (work of a vector field), closed and exact forms. A form is exact if and only if the integral on any zero closed curve. Example of incorrect form closed. Derived under the sign of integral. Starry sets; a closed form on a starred domain is exact. Irrational and conservative fields, solenoidal and potential vector (on starry sets). The Green theorem in the plane. The Rotor theorem.
(reference books)
Analisi Matematica II, Giusti Analisi Matematica II, Chierchia
|
Dates of beginning and end of teaching activities
|
From to |
Delivery mode
|
Traditional
At a distance
|
Attendance
|
not mandatory
|
Evaluation methods
|
Written test
Oral exam
|
Teacher
|
HAUS EMANUELE
(syllabus)
Constrained maxima and minima, Lagrange multipliers.
Ordinary differential equations Examples: equations with separable variables, linear systems with constant coefficients (solution with matrix exponential). Existence and uniqueness theorem. Linear systems, structure of solutions, wronskian, variation of constants.
Riemann integral in Rn Review of the Riemann integral in one dimension. Rectangles in R2, compact support functions, simple functions and their integral, function definition integrable according to Riemann in R2 (hence Rn). Definition of measurable set, a set is measurable if and only if its boundary has zero measurement. Normal sets with respect to the Cartesian axes. A continuous function on a measurable and integrable set. Fubini reduction theorem. Formula of change of variable in integrals (without size). Polar, cylindrical, spherical coordinates. Examples: calculation of some barycenters and moments of inertia.
Regular curves. Regular curves in R ^ n. Tangent versor. Two equivalent curves traveled in the same direction have the same tangent versor. Length of a curve. It is greater than the displacement. Two equivalent curves have the same length. Curvilinear integrals.
Surfaces, flows and divergence theorem. Recalls on the vector product. Definition of regular surface. Tangent plane and normal versor. Area of a surface. Examples: graphs of functions and rotation surfaces. Surface integrals. Flow of a vector field through a surface. Examples. Statement of the divergence theorem. Demonstration of the divergence theorem (for normal domains with respect to the three Cartesian axes.
Differential forms and work. 1-Differential forms. Integral of a 1-differential form (work of a vector field), closed and exact forms. A form is exact if and only if the integral on any zero closed curve. Example of incorrect form closed. Derived under the sign of integral. Starry sets; a closed form on a starred domain is exact. Irrational and conservative fields, solenoidal and potential vector (on starry sets). The Green theorem in the plane. The Rotor theorem.
(reference books)
Analisi Matematica II, Giusti Analisi Matematica II, Chierchia
|
Dates of beginning and end of teaching activities
|
From to |
Delivery mode
|
Traditional
At a distance
|
Attendance
|
not mandatory
|
Evaluation methods
|
Written test
Oral exam
An internship assessment
|
|
|