Machine Learning
(objectives)
The course will allow students to deepen the methods and algorithms typical of Machine Learning (supervised, unsupervised and with reinforcement) and to use them as tools for the development of innovative technologies. In particular, aspects of the main areas of the discipline will be studied, including regression, classification and clustering. The methods and techniques of deep learning and specialized development environments will then be introduced. The course includes the development of an individual or group project that will allow students to apply the theoretical foundations learned in class to concrete problems on various domains of interest. They will be related, for example, to how to analyze large and complex datasets in various fields (e.g., Health Care, Data Science, Data Mining, Financial Analysis, Videogames, Computer Vision, etc.), create systems that adapt and improve over time (e.g., Recommender Systems), and so on. Finally, the course includes monographic seminars dedicated to various case studies.
|