MATHEMATICAL ANALYSIS I
(objectives)
Allow the acquisition of the method deductive logic and provide the basic mathematical tools of the calculation of differential and integral. Each topic will be introduced and strictly the treaty, carrying, sometimes, detailed demonstrations, and also doing large reference to physical meaning, geometric interpretation and application number. Proper methodology and a reasonable skill in the use of the concepts of calculation and its entirety and differential results will put in grade students in principle to face so easy application more topics that will take place in the following courses.
|
Code
|
20810230 |
Language
|
ITA |
Type of certificate
|
Profit certificate
|
Credits
|
12
|
Scientific Disciplinary Sector Code
|
MAT/05
|
Contact Hours
|
108
|
Type of Activity
|
Basic compulsory activities
|
Teacher
|
BATTAGLIA LUCA
(syllabus)
The numbers refer to the chapters and paragraphs of the textbook: Calcolo of P. Marcellini and C. Sbordone.
1) Real numbers and functions
Natural, whole and rational numbers; density of rationals (5). Axioms of real numbers (2). Overview of set theory (4). The intuitive concept of function (6) and Cartesian representation (7). Injective, surjective, bijective and invertible functions. Monotonic functions (8). Absolute value (9). The principle of induction (13).
2) Complements to real numbers
Maximum, minimum, supremum, infimum. 7) Succession limits
Definition and first properties (56.57). Limited successions (58). Operations with limits (59). Indefinite forms (60). Comparative theorems (61). Other properties of succession limits (62). Notable limits (63). Monotone sequences, the number e (64). Sequence going to infinity of increasing order (67).
8) Function limits. Continuous functions
Definition of limit and property (71,72,73). Continuous functions (74). discontinuity (75). Theorems on continuous functions (76).
9) Additions to the limits
The theorem on monotonic sequences (80). Extracted successions; the Bolzano-Weierstrass theorem (81). The Weierstrass theorem (82). Continuity of monotonic functions and inverse functions (83).
10) Derivatives Definition and physical meaning (88-89). Operations with derivatives (90). Derivatives of compound functions and inverse functions (91). Derivative of elementary functions (92). Geometric meaning of the derivative: tangent line (93).
11) Applications of derivatives. Function study
Maximum and minimum relative. Fermat's theorem (95). Theorems of Rolle and Lagrange (96). Increasing, decreasing, convex and concave functions (97-98). De l'Hopital theorem (99). Study of the graph of a function (100). Taylor's formula: first properties (101).
14) Integration according to Riemann
Definition (117). Properties of the defined integrals (118). Uniform continuity. Cantor's theorem (119). Integrability of continuous functions (120). The theorems of the average (121).
15) Undefined integrals
The fundamental theorem of integral calculus (123). Primitives (124). The indefinite integral (125). Integration by parts and by substitution (126,127,128,129). Improper integrals (132). 16) Taylor's formula
Rest of Peano (135). Use of Taylor's formula in the calculation of limits (136). 17) Series
Numerical series (141). Series with positive terms (142). Geometric series and harmonic series (143.144). Convergence criteria (145). Alternate series (146). Absolute convergence (147). Taylor series (149).
(reference books)
S. Lang, A First Course in Calculus, Springer Ed.
|
Dates of beginning and end of teaching activities
|
From 27/09/2021 to 21/01/2022 |
Delivery mode
|
Traditional
At a distance
|
Attendance
|
not mandatory
|
Evaluation methods
|
Written test
Oral exam
|
Teacher
|
RAIMONDI ROBERTO
(syllabus)
The numbers refer to the chapters and paragraphs of the textbook: Calcolo of P. Marcellini and C. Sbordone.
1) Real numbers and functions
Natural, whole and rational numbers; density of rationals (5). Axioms of real numbers (2). Overview of set theory (4). The intuitive concept of function (6) and Cartesian representation (7). Injective, surjective, bijective and invertible functions. Monotonic functions (8). Absolute value (9). The principle of induction (13).
2) Complements to real numbers
Maximum, minimum, supremum, infimum. 7) Succession limits
Definition and first properties (56.57). Limited successions (58). Operations with limits (59). Indefinite forms (60). Comparative theorems (61). Other properties of succession limits (62). Notable limits (63). Monotone sequences, the number e (64). Sequence going to infinity of increasing order (67).
8) Function limits. Continuous functions
Definition of limit and property (71,72,73). Continuous functions (74). discontinuity (75). Theorems on continuous functions (76).
9) Additions to the limits
The theorem on monotonic sequences (80). Extracted successions; the Bolzano-Weierstrass theorem (81). The Weierstrass theorem (82). Continuity of monotonic functions and inverse functions (83).
10) Derivatives Definition and physical meaning (88-89). Operations with derivatives (90). Derivatives of compound functions and inverse functions (91). Derivative of elementary functions (92). Geometric meaning of the derivative: tangent line (93).
11) Applications of derivatives. Function study
Maximum and minimum relative. Fermat's theorem (95). Theorems of Rolle and Lagrange (96). Increasing, decreasing, convex and concave functions (97-98). De l'Hopital theorem (99). Study of the graph of a function (100). Taylor's formula: first properties (101).
14) Integration according to Riemann
Definition (117). Properties of the defined integrals (118). Uniform continuity. Cantor's theorem (119). Integrability of continuous functions (120). The theorems of the average (121).
15) Undefined integrals
The fundamental theorem of integral calculus (123). Primitives (124). The indefinite integral (125). Integration by parts and by substitution (126,127,128,129). Improper integrals (132). 16) Taylor's formula
Rest of Peano (135). Use of Taylor's formula in the calculation of limits (136). 17) Series
Numerical series (141). Series with positive terms (142). Geometric series and harmonic series (143.144). Convergence criteria (145). Alternate series (146). Absolute convergence (147). Taylor series (149).
(reference books)
S. Lang, A First Course in Calculus, Springer Ed.
|
Dates of beginning and end of teaching activities
|
From 27/09/2021 to 21/01/2022 |
Delivery mode
|
Traditional
At a distance
|
Attendance
|
not mandatory
|
Evaluation methods
|
Written test
Oral exam
|
|
|