Fruisce da
|
20410586 AM220-ANALISI MATEMATICA 4 in Matematica L-35 BIASCO LUCA, BESSI UGO
(programma)
1. Funzioni di n variabili reali Spazi vettoriali. Prodotto scalare (disuguaglianza di Cauchy-Schwarz), norma, distanza, topologia standard, compattezza in Rn .
Funzioni continue da Rn in Rm. Continuita' ed uniforme continuita'. Teorema di Weierstrass. Definizioni di derivata parziale e direzionale, funzioni differenziabili, gradiente, Prop.: una funzione differenziabile continua e ha tutte le derivate direzionali. Teorema del differenziale totale Lemma di Schwarz. Funzioni Ck, regola della catena . Matrice hessiana. Formula di Taylor al secondo ordine. Punti stazionari massimi e minimi Matrici definite positive. Prop: i punti di massimo o minimo sono punti critici; i punti critici in cui la matrice Hessiana e’ definita positiva (negativa) sono punti di minimo (massimo); i punti critici in cui la matrice Hessiana ha un autovalore positivo e uno negativo sono selle. Funzioni differenziabili da Rn ad Rm; Matrice jacobiana. Matrice jacobiana della composizione.
2. Spazi normati e spazi di Banach Esempi. Successioni convergenti e di Cauchy . Norme equivalenti . Equivalenza delle norme in Rn. Lo spazio delle funzioni continue con la norma del sup uno spazio di Banach. Il teorema del punto fisso in spazi di Banach
3. Funzioni implicite Il teorema delle funzioni implicite e Inversa . Massimi e minimi vincolati, moltiplicatori di Lagrange .
4. Equazioni differenziali ordinarie Esempi: equazioni a variabili separabili, sistemi lineari a coefficienti costanti (soluzione con l’esponenziale di matrice), Teorema di esistenza e unicita’ . Sistemi lineari, struttura delle soluzioni, wronskiano, variazione di costanti.
5. Integrale di Riemann in Rn
Ripasso sull’integrale di Riemann in una dimensione. Rettangoli in R2, funzioni a supporto compatto, funzioni semplici e loro integrale, definizione di funzione integrabile secondo Riemann in R2 (quindi Rn). Definizione di insieme misurabile, un insieme è misurabile se e solo se la sua frontiera ha misura nulla. Insiemi normali rispetto agli assi cartesiani. Una funzione continua su un insieme misurabile `e integrabile. Teorema di riduzione di Fubini. Formula del cambio di variabile negli integrali (senza dim.). Coordinate polari, cilindriche, sferiche. Esempi: calcolo di alcuni baricentri e momenti di inerzia.
6. Curve regolari Curve regolari in R^n. Versore tangente. Due curve equivalenti percorse nello stesso verso hanno lo stesso versore tangente. Lunghezza di una curva. E’ maggiore dello spostamento Due curve equivalenti hanno la stessa lunghezza. Integrali curvilinei.
7. Superfici, flussi e teorema della divergenza. Richiami sul prodotto vettoriale. Definizione di superficie regolare. Piano tangente e versore normale. Area di una superficie. Esempi: grafici di funzioni e superfici di rotazione. Integrali superficiali. Flusso di un campo vettoriale attraverso una superficie. Esempi. Enunciato del teorema della divergenza. Dimostrazione del teorema della divergenza (per domini normali rispetto ai tre assi cartesiani.
8. Forme differenziali e lavoro. 1-Forme differenziali. Integrale di una 1-Forma differenziale (lavoro di un campo vettoriale), forme chiuse ed esatte. Una forma è esatta se e solo se l’integrale su una qualsiasi curva chiusa nullo. Esempio di forma chiusa non esatta. Derivate sotto segno di integrale. Insiemi stellati; una forma chiusa su un dominio stellato è esatta. Campi irrotazionali e conservativi, solenoidali e potenziale vettore (su insiemi stellati). Il teorema di Green nel piano. Il teorema del Rotore.
9. Serie e successioni di funzioni Serie e successioni di funzioni: convergenza puntuale, uniforme e totale. Continuità del limite, integrazione e derivazione di successioni di funzioni uniformemente convergenti. Serie di potenze: raggio di convergenza. Esempi di serie di Taylor di funzioni elementari.
10. Serie di Fourier Serie di Fourier, coefficienti di Fourier. Proprietà dei coefficienti di Fourier, disuguaglianza di Bessel, Lemma di Riemann Lebesgue. Convergenza puntuale della serie di Fourier (test del Dini). Convergenza totale nel caso di funzioni C1. Uguaglianza di Parseval.
(testi)
Analisi Matematica II, Giusti Analisi Matematica II, Chierchia
|