ANALISI MATEMATICA I
(obiettivi)
Consentire l'acquisizione del metodo logico deduttivo e fornire gli strumenti matematici di base del calcolo differenziale ed integrale. Ciascun argomento verrà rigorosamente introdotto e trattato, svolgendo, talvolta, dettagliate dimostrazioni, e facendo inoltre ampio riferimento al significato fisico, all'interpretazione geometrica e all'applicazione numerica. Una corretta metodologia e una discreta abilità nell'utilizzo dei concetti del calcolo integro-differenziale e dei relativi risultati dovranno mettere in grado gli studenti, in linea di principio, di affrontare in modo agevole i temi più applicativi che si svolgeranno nei corsi successivi.
|
Codice
|
20810231 |
Lingua
|
ITA |
Tipo di attestato
|
Attestato di profitto |
Crediti
|
12
|
Settore scientifico disciplinare
|
MAT/05
|
Ore Aula
|
108
|
Attività formativa
|
Attività formative di base
|
Canale: CANALE 1
Docente
|
ESPOSITO PIERPAOLO
(programma)
Insiemi numerici (N,Z,Q e R), costruzione assiomatica di R tramite estremo superiore, proprietà di Archimede, densità di Q in R, costruzione di N in R e principio di induzione, formula binomiale e calcolo combinatorio, potenze di esponente reale, disuguaglianza di Bernoulli; elementi di topologia in R (punti isolati e di accumulazione, insiemi aperti/chiusi e caratterizzazione, chiusura di un insieme) e teorema di Bolzano-Weierstrass; i numeri complessi, rappresentazione polare e radici n-esime dell'unità; funzioni reali di variabile reale, dominio, immagine e funzioni inverse; limiti di funzione e proprietà, limiti di funzioni monotone; limiti di successione, limiti notevoli, il numero di Nepero, il teorema ponte, limsup/liminf, successioni e topologia, insiemi compatti e caratterizzazione; funzioni continue e loro proprietà, continuità delle funzione elementari, tipi di discontinuità e funzioni monotone, teoremi fondamentali sulle funzioni continue (zeri, dei valori intermedi, Weierstrass); derivata di funzione e proprietà, derivate delle funzione elementari, i teoremi fondamentali del calcolo differenziale (Fermat, Rolle, Cauchy, Lagrange, de l'Hopital, formula di Taylor), monotonia e segno della derivata, massimi/minimi locali degeneri, funzioni convesse/concave; grafico di funzione; integrazione secondo Riemann e proprietà, integrabilità delle funzioni continue, primitive delle funzioni elementari, I e II teorema fondamentale del calcolo integrale, integrazione per sostituzione e per parti, funzioni razionali, alcune sostituzioni speciali; serie numeriche e convergenza, serie geometrica, criteri di convergenza per serie a termini positivi (confronto, confronto asintotico, radice n-esima, rapporto, condensazione) e per serie a termini qualsiasi (convergenza assoluta, Leibniz); sviluppi in serie di Taylor, sviluppi di alcune funzioni elementari; integrali impropri.
(testi)
"Calcolo", P. Marcellini, C. Sbordone, editore Liguori "Esercitazioni di Matematica: vol. 1.1 e 1.2", P. Marcellini, C. Sbordone, editore Liguori
|
Date di inizio e termine delle attività didattiche
|
Dal 28/09/2020 al 22/01/2021 |
Modalità di erogazione
|
Tradizionale
|
Modalità di frequenza
|
Non obbligatoria
|
Metodi di valutazione
|
Prova scritta
|
Docente
|
ARCADI GIORGIO
|
Date di inizio e termine delle attività didattiche
|
Dal 28/09/2020 al 22/01/2021 |
Modalità di frequenza
|
Non obbligatoria
|
Canale: CANALE 2
Docente
|
SCOPPOLA ELISABETTA
(programma)
I numeri si riferiscono ai capitoli e ai paragrafi del libro di testo: Calcolo di P. Marcellini e C. Sbordone.
1) I numeri e le funzioni reali
Numeri naturali, interi e razionali; densità dei razionali (5). Assiomi dei numeri reali (2). Cenni di teoria degli insiemi (4). Il concetto intuitivo di funzione (6) e rappresentazione cartesiana (7). Funzioni iniettive, suriettive, biettive e invertibili. Funzioni monotone (8). Valore assoluto (9). Il principio di induzione (13). 2) Complementi ai numeri reali
Massimo, minimo, estremo superiore, estremo inferiore. 7) Limiti di successioni
Definizione e prime proprietà (56,57). Successioni limitate (58). Operazioni con i limiti (59). Forme indeterminate (60). Teoremi di confronto (61). Altre proprietà dei limiti di successioni (62). Limiti notevoli (63). Successioni monotone, il numero e (64). Infiniti di ordine crescente (67).
8) Limiti di funzioni. Funzioni continue
Definizione di limite e proprietà (71,72,73). Funzioni continue (74). discontinuità (75). Teoremi sulle funzioni continue (76).
9) Complementi ai limiti
Il teorema sulle successioni monotone (80). Successioni estratte; il teorema di Bolzano-Weierstrass (81). Il teorema di Weierstrass (82). Continuità delle funzioni monotone e delle funzioni inverse (83).
10) Derivate Definizione e significato fisico (88-89). Operazioni con le derivate (90). Derivate delle funzioni composte e delle funzioni inverse (91). Derivata delle funzioni elementari (92). Significato geometrico della derivata: retta tangente (93).
11) Applicazioni delle derivate. Studio di funzioni
Massimi e minimi relativi. Teorema di Fermat (95). Teoremi di Rolle e Lagrange (96). Funzioni crescenti, decrescenti, convesse e concave (97-98). Il teorema di de l'Hopital (99). Studio del grafico di una funzione (100). La formula di Taylor: prime proprietà (101). 14) Integrazione secondo Riemann
Definizione (117). Proprietà degli integrali definiti (118). Uniforme continuità. Teorema di Cantor (119). Integrabilità delle funzioni continue (120). I teoremi della media (121).
15) Integrali indefiniti
Il teorema fondamentale del calcolo integrale (123). Primitive (124). L'integrale indefinito (125). Integrazione per parti e per sostituzione (126,127,128,129). Integrali impropri (132). 16) Formula di Taylor
Resto di Peano (135). Uso della formula di Taylor nel calcolo dei limiti (136). 17) Serie
Serie numeriche (141). Serie a termini positivi (142). Serie geometrica e serie armonica (143,144). Criteri di convergenza (145). Serie alternate (146). Convergenza assoluta (147). Serie di Taylor (149).
(testi)
P. Marcellini, C. Sbordone, Calcolo, Ed. Liguori, 1992 S. Lang, A First Course in Calculus, Springer Ed. L.Chierchia, Corso di Analisi - Prima parte, McGraw Hill (2019)
|
Date di inizio e termine delle attività didattiche
|
Dal 28/09/2020 al 22/01/2021 |
Modalità di erogazione
|
Tradizionale
A distanza
|
Modalità di frequenza
|
Non obbligatoria
|
Metodi di valutazione
|
Prova scritta
Prova orale
|
Docente
|
CAMISASCA GAIA
(programma)
Esercitazioni del corso. Il programma del corso è: Programma:
I numeri si riferiscono ai capitoli e ai paragrafi del libro di testo: Calcolo di P. Marcellini e C. Sbordone.
1) I numeri e le funzioni reali
Numeri naturali, interi e razionali; densità dei razionali (5). Assiomi dei numeri reali (2). Cenni di teoria degli insiemi (4). Il concetto intuitivo di funzione (6) e rappresentazione cartesiana (7). Funzioni iniettive, suriettive, biettive e invertibili. Funzioni monotone (8). Valore assoluto (9). Il principio di induzione (13). 2) Complementi ai numeri reali
Massimo, minimo, estremo superiore, estremo inferiore. 7) Limiti di successioni
Definizione e prime proprietà (56,57). Successioni limitate (58). Operazioni con i limiti (59). Forme indeterminate (60). Teoremi di confronto (61). Altre proprietà dei limiti di successioni (62). Limiti notevoli (63). Successioni monotone, il numero e (64). Infiniti di ordine crescente (67).
8) Limiti di funzioni. Funzioni continue
Definizione di limite e proprietà (71,72,73). Funzioni continue (74). discontinuità (75). Teoremi sulle funzioni continue (76).
9) Complementi ai limiti
Il teorema sulle successioni monotone (80). Successioni estratte; il teorema di Bolzano-Weierstrass (81). Il teorema di Weierstrass (82). Continuità delle funzioni monotone e delle funzioni inverse (83).
10) Derivate Definizione e significato fisico (88-89). Operazioni con le derivate (90). Derivate delle funzioni composte e delle funzioni inverse (91). Derivata delle funzioni elementari (92). Significato geometrico della derivata: retta tangente (93).
11) Applicazioni delle derivate. Studio di funzioni
Massimi e minimi relativi. Teorema di Fermat (95). Teoremi di Rolle e Lagrange (96). Funzioni crescenti, decrescenti, convesse e concave (97-98). Il teorema di de l'Hopital (99). Studio del grafico di una funzione (100). La formula di Taylor: prime proprietà (101). 14) Integrazione secondo Riemann
Definizione (117). Proprietà degli integrali definiti (118). Uniforme continuità. Teorema di Cantor (119). Integrabilità delle funzioni continue (120). I teoremi della media (121).
15) Integrali indefiniti
Il teorema fondamentale del calcolo integrale (123). Primitive (124). L'integrale indefinito (125). Integrazione per parti e per sostituzione (126,127,128,129). Integrali impropri (132). 16) Formula di Taylor
Resto di Peano (135). Uso della formula di Taylor nel calcolo dei limiti (136). 17) Serie
Serie numeriche (141). Serie a termini positivi (142). Serie geometrica e serie armonica (143,144). Criteri di convergenza (145). Serie alternate (146). Convergenza assoluta (147). Serie di Taylor (149).
(testi)
P. Marcellini, C. Sbordone, Calcolo, Ed. Liguori, 1992 S. Lang, A First Course in Calculus, Springer Ed. L.Chierchia, Corso di Analisi - Prima parte, McGraw Hill (2019)
|
Date di inizio e termine delle attività didattiche
|
Dal 28/09/2020 al 22/01/2021 |
Modalità di erogazione
|
Tradizionale
A distanza
|
Modalità di frequenza
|
Non obbligatoria
|
Metodi di valutazione
|
Prova scritta
Prova orale
|
|
|