Mutua da
|
20410441 CP420-INTRODUZIONE AI PROCESSI STOCASTICI in Scienze Computazionali LM-40 MARTINELLI FABIO
(programma)
1. Passeggiate aleatorie e Catene di Markov Successioni di variabili aleatorie. Passeggiate aleatorie. Catene di Markov a tempo discreto e tempo continuo. Misura invariante, time-reversal e reversibilita' 2. Esempi e modelli classici. Passeggiate aleatorie su grafi. Processi di nascita e morte. Processi di esclusione. Metodo Monte Carlo: algoritmi di tipo Metropolis e dinamiche di Glauber per il modello di Ising, colorazioni di un grafo e altri sistemi interagenti. 3. Convergenza all'equilibrio I. Distanza in variazione, tempi di mixing. Teoremi ergodici. Tecniche di accoppiamento. Tempi stazionari forti. Applicazioni al problema del “coupon collector” e al mescolamento di un mazzo di carte. 4. Convergenza all'equilibrio II. Gap spettrale e stime dei tempi di rilassamento. Disuguaglianza di Cheeger, conduttanza e metodo dei cammini. Metodo della “comparazione”. Gap spettrale per il processo di esclusione sul toro d-dimensionale. Convergenza all'equilibrio in termini di entropia e disuguaglianze di Sobolev logaritmiche. Esempi. 5. Altri argomenti scelti. Dinamica di Glauber per il modello di Ising: transizione di fase dinamica per il modello di campo medio e per il modello su reticolo. Il fenomeno del “cut- off”. Disuguaglianze di Sobolev logaritmiche e convergenza all'equilibrio. Algoritmi per la “simulazione perfetta”.
(testi)
D. Levine, Y. Peres, E. Wilmer, Markov chains and mixing times.. AMS bookstore, (2009).
|