Derived from
|
20410193 ME410 - ELEMENTARY MATHEMATICS FROM AN ADVANCED POINT OF VIEW in Mathematics LM-40 SUPINO PAOLA
(syllabus)
• Euclidean Geometry: triangles centers , circle inversion. • Ordered Geometry and Sylvester problem. • Projective Geometry: axioms, Desargues, collineations and correlations • Platonic Solids Euler formula. Politops, 4-dimensional space politops. • Topology of surfaces and graphs 4 colors problem and 6 colors theorem, Heawood theorem. • Delaunay triangulations. • Newton polygons . • Introduction to tropical geometry.
(reference books)
1) H.S.M Coxeter Introduction to geometry, Wiley 1970; + appunti.
selected pages from
2) D. Hilbert, S. Cohn Vossen, Geometria intuitiva, cap. 3 , 1932, ed. varie; 3) M. Aigner, Martin, G. Ziegler, Proofs from THE BOOK, Springer, 1998; 4) J. Stillwell The Four Pillars of Geometry, Springer 2005; 5) H.D. Ebbinghaus, H. Hermes, F. Hirzebruch, et al. Numbers, GTM 123, Springer 1990; 6) Stefano Rebay, Tecniche di Generazione di Griglia per il Calcolo Scientico-Triangolazione di Delaunay, slides Univ. Studi di Brescia; 7) G. Fisher Plane algebraic curves, AMS Students Mathematical Library V. 15, AMS 2001. 8) H. Rademacher, O. Toeplitz The enjoyment of mathematics, Princeton Univ. Press, 1957 (e ristampe) . 9) B. Sturmfels, Polynomial equations and convex polytopes, American Mathematical Monthly 105 (1998) 907-922. 10) Shuhong Gao, Absolute Irreducibility of Polynomials via Newton Polytopes, J. of Algebra 237 (2001), 501-520. 11) D. Speyer and B. Sturmfels, Tropical mathematics, Mathematics Magazine 82 (2009) 163—173; 12) G.Mikhalkin Tropical geometry and its applications. International Congress of Mathematicians. Vol. II, 827–852, Eur. Math. Soc., Zürich, 2006 13) E. Brugallé, Erwan;I. Itemberg, G.Mikhalkin, K. Shaw, Brief introduction to tropical geometry. Proceedings of the Gökova Geometry-Topology Conference 2014, 1–75, Gökova Geometry/Topology Conference (GGT), Gökova, 2015
|