Teacher
|
SUPINO PAOLA
(syllabus)
• Euclidean Geometry: triangles centers , circle inversion. • Ordered Geometry and Sylvester problem. • Projective Geometry: axioms, Desargues, collineations and correlations • Platonic Solids Euler formula. Politops, 4-dimensional space politops. • Topology of surfaces and graphs 4 colors problem and 6 colors theorem, Heawood theorem. • Delaunay triangulations. • Plane curves, local study of singularities, Newton polygons .
(reference books)
1) H.S.M. Coxeter Introduction to geometry, Wiley 1970; 2) G. Fisher Plane algebraic curves, AMS Students Mathematical Library V. 15, AMS 2001. moreover 3) M. Aigner, G. Ziegler, Proofs from THE BOOK, Springer, 1998; 4) S. Rebay, Tecniche di Generazione di Griglia per il Calcolo Scientifico-Triangolazione di Delaunay, slides Univ. Studi di Brescia; 5) B. Sturmfels, Polynomial equations and convex polytopes, American Mathematical Monthly 105 (1998) 907-922. 6) Shuhong Gao, Absolute Irreducibility of Polynomials via Newton Polytopes, J. of Algebra
|