Teacher
|
BELFIORE NICOLA PIO
(syllabus)
Introduction to Functional Design: design methods, classification according to Artobolewsky, functional classification: rigid body guidance, function generator, path generator. Topological Analysis and Synthesis of mechanisms: graph-mechanism correspondence; enumeration of kinematic chains, graphs isomorphism and planarity. Kinematic Analysis and Synthesis of mechanisms for finite displacements: method based on the displacement matrices, plane and spatial motions, Freudenstein’s equation. Kinematic Synthesis of mechanisms for infinitesimal displacements: Classical and Generalized Burmester’s Theory, general methods based on geometric invariants and on centrodes; kinematic analysis with kinematic invariants, cognate mechanisms. Automotive: automatic gearbox, epicyclic and differential gear drives, suspensions and steering mechanisms, clutches. Transmissions and actuation: parallel, bevel and skew axis transmissions, joints, principle of inertia match. Lubrication: Elasto-Hydro-Dynamic Lubrication EHL. Dynamic simulation of Multi Body Systems and of continuum structures: methods for the solution of the set of dynamic equations of a MBS with constraints; dynamic simulation of structures via FEA. Compliant mechanisms: Kinematic, kinetostatic and dynamic analysis and simulation of compliant mechanisms. Isotropic compliance: synthesis of the compliance in E(3) and SE(3) for mechanisms and robots. MEMS and NEMS: design, simulation, fabrication, characterization, test and operational strategies of micro/nano electro mechanical systems. Mechatronics: control of mechanisms in dynamic regime, mechanisms for the automation, ratchet and Geneva mechanisms, microcontrollers. Creativity in Design: Atlases of mechanisms, TRIZ and LT. Computational intelligence: optimization of mechanisms for performance indices, pressure angle and mechanical gain.
(reference books)
Lecture notes.
|