BIO-ORGANIC CHEMISTRY
(objectives)
The course will address the chemical transformations shared by organic chemistry and biological systems. Indeed, although the functional group elaborations are formally the same, the followed reaction pathways result to be quite different with respect to the experimental conditions of both organic syntheses and biological processes. In such a context, the enzymatic action modes in living systems will be compared with the key role performed by temperature, pressure, pH, catalysts and solvents. Keeping this in mind, a few of the most well-known chemical reaction mechanisms will be studied, underlining, step by step, the main similarities and distinctions with the analogous biological transformations
|
Code
|
20402204 |
Language
|
ITA |
Type of certificate
|
Profit certificate
|
Credits
|
6
|
Scientific Disciplinary Sector Code
|
CHIM/06
|
Contact Hours
|
48
|
Type of Activity
|
Related or supplementary learning activities
|
Derived from
|
20402204 BIO-ORGANIC CHEMISTRY in Biology for Molecular, Cellular and Physiopathological Research LM-6 N0 GASPERI TECLA
(syllabus)
Contents Introduction to Bioorganic Chemistry (A short overview about the most common functional groups involved in biological processes, highlighting their main features). Organic chemistry mechanisms to explain key steps in pivotal biological pathways: • Electrophilic Addition Reactions: regioselective epoxidation of alkenes; the action of squalene epoxidase in squalene/lanosterol transformation. • Nucleophilic Substitution Reactions bimolecular Nucleophilic Substitution Reaction (SN2): the S-adenosylmethionine (SAM) role in the methyltransferase-catalyzed reactions; carbocation chemistry in the nucleophilic substitution reaction (SN1): the IPP isomerase. • Elimination reactions: β-elimination reaction and the enolase role in the synthesis of the phosphoenol pyruvate (PEP). • Nucleophilic Carbonyl Addition Reactions imine and enamine formation; how Schiff bases act in the PLP-dependent enzymatic catalysis; acetals and sucrose synthase; Michael additions and the histidine ammonia-lyase function. • Isomerization and epimerization: keto-enol tautomerism and ribose-5-phosphate isomerase catalysis; Inversion and retention of the stereochemical configuration: the glucosidase mechanism. • Carbonyl condensation reactions: aldol condensation promoted by aldolases (classes I and II) Claisen condensation and the acetyl synthase function in the fatty acids synthesis. • Acyl Nucleophilic Substitutions: the hydrolysis of esters and the mechanism of Human Pancreatic Lipase; esterification reactions and the synthesis of triacylglycerols by means of acyl-CoA synthetase and acyltransferase; amide bond formation; asparagine synthetase vs glutamine synthetase; the hydrolysis of amides and the chymotrypsin action mode. • Oxidations and reductions metal hydride and the reduction of the ketone carbonyl group in acetoacetyl ACP due to the β-keto thioester reductase; Baeyer-Villinger oxidation and the hydroxyacetophenone monooxygenase; ozonolysis reactions and the dioxygenase enzyme activity. • Carboxylation reactions: Grignard reactions in CO2 atmosphere; mechanisms of both the pyruvate carboxylase and Ribulose-1,5-bisphosphate carboxylase oxygenase (RuBiscO); the decarboxylation reaction in both malonic and acetoacetic synthesis; the key role of thiamine pyrophosphate (TPP) in the 1-deoxy-D-xylulose 5-phosphate synthase catalysis. • Noteworthy examples: pyruvate dehydrogenase complex, the kynurenine catalysis and the tryptophan metabolism; anomalous features in hystidine metabolism.
Moreover, there will be a number of practical experiences, during which few enzymatic transformations will be compared with the corresponding chemical reactions.
(reference books)
John McMurry, Tadhg Begley in “Chimica Bio-Organica”, Zanichelli Ed. spa T.W. Graham Solomons; Craig B. Fryhle in “Organic Chemistry”, 10th Edition, Wiley. John McMurry in “Chimica Organica”, Piccin-Nuova Libreria Bruno Botta in “Chimica Organica” Edi-ermes
Lecture notes and bibliographical references will be provided
The teacher receives Tuesday from 17.00 to 19.00 by appointment via e-mail: tecla.gasperi@uniroma3.it
|
Dates of beginning and end of teaching activities
|
From to |
Delivery mode
|
Traditional
|
Attendance
|
Mandatory
|
Evaluation methods
|
Oral exam
|
|
|