ANALISI MATEMATICA I
(obiettivi)
CONSENTIRE L'ACQUISIZIONE DEL METODO LOGICO DEDUTTIVO E FORNIRE GLI STRUMENTI MATEMATICI DI BASE DEL CALCOLO DIFFERENZIALE ED INTEGRALE. CIASCUN ARGOMENTO VERRÀ RIGOROSAMENTE INTRODOTTO E TRATTATO, SVOLGENDO, TALVOLTA, DETTAGLIATE DIMOSTRAZIONI, E FACENDO INOLTRE AMPIO RIFERIMENTO AL SIGNIFICATO FISICO, ALL'INTERPRETAZIONE GEOMETRICA E ALL'APPLICAZIONE NUMERICA. UNA CORRETTA METODOLOGIA E UNA DISCRETA ABILITÀ NELL'UTILIZZO DEI CONCETTI DEL CALCOLO INTEGRO-DIFFERENZIALE E DEI RELATIVI RISULTATI DOVRANNO METTERE IN GRADO GLI STUDENTI, IN LINEA DI PRINCIPIO, DI AFFRONTARE IN MODO AGEVOLE I TEMI PIÙ APPLICATIVI CHE SI SVOLGERANNO NEI CORSI SUCCESSIVI.
|
Codice
|
20802114 |
Lingua
|
ITA |
Tipo di attestato
|
Attestato di profitto |
Crediti
|
12
|
Settore scientifico disciplinare
|
MAT/05
|
Ore Aula
|
108
|
Attività formativa
|
Attività formative di base
|
Canale: CANALE 1
Mutua da
|
20802114 ANALISI MATEMATICA I in INGEGNERIA INFORMATICA L-8 CANALE 1 TOLLI FILIPPO
(programma)
Insiemi numerici (N,Z,Q e R), costruzione assiomatica di R tramite estremo superiore, proprietà di Archimede, densità di Q in R, costruzione di N e principio di induzione, binomio di Newton e calcolo combinatorio, potenze di esponente reale, disuguaglianza di Bernoulli; elementi di topologia in R (punti isolati e di accumulazione, insiemi aperti/chiusi e caratterizzazione, chiusura di un insieme) e teorema di Bolzano-Weierstrass; i numeri complessi, rappresentazione polare e radici n-esime dell'unità; funzioni reali di variabile reale, dominio, co-dominio e funzioni inverse; limiti di funzione e proprietà, limiti di funzioni monotone; limiti di successione, limiti notevoli, il numero di Nepero, il teorema ponte, limsup/liminf, successioni e topologia, insiemi compatti e caratterizzazione; funzioni continue e loro proprietà, continuità delle funzione elementari, tipi di discontinuità e funzioni monotone, teoremi fondamentali sulle funzioni continue (zeri, dei valori intermedi, Weierstrass); derivata di funzione e proprietà, derivate delle funzione elementari, i teoremi fondamentali del calcolo differenziale (Fermat, Rolle, Cauchy, Lagrange, de l'Hopital, formula di Taylor), monotonia e segno della derivata, massimi/minimi locali degeneri, funzioni convesse/concave; grafico di funzione; integrazione secondo Riemann e proprietà, integrabilità delle funzioni continue, primitive delle funzioni elementari, I e II teorema fondamentale del calcolo integrale, integrazione per sostituzione e per parti, funzioni razionali, alcune sostituzioni speciali; serie numeriche e convergenza, serie geometrica, criteri di convergenza per serie a termini positivi (confronto, confronto asintotico, radice, rapporto, condensazione) e per serie a termini qualsiasi (convergenza assoluta, Leibnitz); sviluppi in serie di Taylor, sviluppi di alcune funzioni elementari; integrali impropri.
(testi)
A. Laforgia, Calcolo differenziale e integrale, Ed. Accademica; P. Marcellini e C. Sbordone, Esercizi di Matematica, Vol. 1, tomi 1--4, Ed. Liguori;
|
Date di inizio e termine delle attività didattiche
|
Dal al |
Modalità di erogazione
|
Tradizionale
|
Modalità di frequenza
|
Non obbligatoria
|
Metodi di valutazione
|
Prova scritta
|
Canale: CANALE 2
Mutua da
|
20802114 ANALISI MATEMATICA I in INGEGNERIA INFORMATICA L-8 CANALE 2 NATALINI PIERPAOLO
(programma)
Insiemi numerici (N,Z,Q e R), costruzione assiomatica di R tramite estremo superiore, proprietà di Archimede, densità di Q in R, costruzione di N e principio di induzione, binomio di Newton e calcolo combinatorio, potenze di esponente reale, disuguaglianza di Bernoulli; elementi di topologia in R (punti isolati e di accumulazione, insiemi aperti/chiusi e caratterizzazione, chiusura di un insieme) e teorema di Bolzano-Weierstrass; i numeri complessi, rappresentazione polare e radici n-esime dell'unità; funzioni reali di variabile reale, dominio, co-dominio e funzioni inverse; limiti di funzione e proprietà, limiti di funzioni monotone; limiti di successione, limiti notevoli, il numero di Nepero, il teorema ponte, limsup/liminf, successioni e topologia, insiemi compatti e caratterizzazione; funzioni continue e loro proprietà, continuità delle funzione elementari, tipi di discontinuità e funzioni monotone, teoremi fondamentali sulle funzioni continue (zeri, dei valori intermedi, Weierstrass); derivata di funzione e proprietà, derivate delle funzione elementari, i teoremi fondamentali del calcolo differenziale (Fermat, Rolle, Cauchy, Lagrange, de l'Hopital, formula di Taylor), monotonia e segno della derivata, massimi/minimi locali degeneri, funzioni convesse/concave; grafico di funzione; integrazione secondo Riemann e proprietà, integrabilità delle funzioni continue, primitive delle funzioni elementari, I e II teorema fondamentale del calcolo integrale, integrazione per sostituzione e per parti, funzioni razionali, alcune sostituzioni speciali; serie numeriche e convergenza, serie geometrica, criteri di convergenza per serie a termini positivi (confronto, confronto asintotico, radice, rapporto, condensazione) e per serie a termini qualsiasi (convergenza assoluta, Leibnitz); sviluppi in serie di Taylor, sviluppi di alcune funzioni elementari; integrali impropri.
(testi)
A. Laforgia, Calcolo differenziale e integrale, Ed. Accademica; P. Marcellini e C. Sbordone, Esercizi di Matematica, Vol. 1, tomi 1--4, Ed. Liguori;
|
Date di inizio e termine delle attività didattiche
|
Dal al |
Modalità di erogazione
|
Tradizionale
|
Modalità di frequenza
|
Non obbligatoria
|
Metodi di valutazione
|
Prova scritta
|
Canale: CANALE 3
Mutua da
|
20802114 ANALISI MATEMATICA I in INGEGNERIA INFORMATICA L-8 CANALE 3 ESPOSITO PIERPAOLO
(programma)
Insiemi numerici (N,Z,Q e R), costruzione assiomatica di R tramite estremo superiore, proprietà di Archimede, densità di Q in R, costruzione di N in R e principio di induzione, formula binomiale e calcolo combinatorio, potenze di esponente reale, disuguaglianza di Bernoulli; elementi di topologia in R (punti isolati e di accumulazione, insiemi aperti/chiusi e caratterizzazione, chiusura di un insieme) e teorema di Bolzano-Weierstrass; i numeri complessi, rappresentazione polare e radici n-esime dell'unità; funzioni reali di variabile reale, dominio, immagine e funzioni inverse; limiti di funzione e proprietà, limiti di funzioni monotone; limiti di successione, limiti notevoli, il numero di Nepero, il teorema ponte, limsup/liminf, successioni e topologia, insiemi compatti e caratterizzazione; funzioni continue e loro proprietà, continuità delle funzione elementari, tipi di discontinuità e funzioni monotone, teoremi fondamentali sulle funzioni continue (zeri, dei valori intermedi, Weierstrass); derivata di funzione e proprietà, derivate delle funzione elementari, i teoremi fondamentali del calcolo differenziale (Fermat, Rolle, Cauchy, Lagrange, de l'Hopital, formula di Taylor), monotonia e segno della derivata, massimi/minimi locali degeneri, funzioni convesse/concave; grafico di funzione; integrazione secondo Riemann e proprietà, integrabilità delle funzioni continue, primitive delle funzioni elementari, I e II teorema fondamentale del calcolo integrale, integrazione per sostituzione e per parti, funzioni razionali, alcune sostituzioni speciali; serie numeriche e convergenza, serie geometrica, criteri di convergenza per serie a termini positivi (confronto, confronto asintotico, radice n-esima, rapporto, condensazione) e per serie a termini qualsiasi (convergenza assoluta, Leibniz); sviluppi in serie di Taylor, sviluppi di alcune funzioni elementari; integrali impropri.
(testi)
"Analisi Matematica 1", M. Bramanti, C.D. Pagani, S. Salsa, editore Zanichelli "Analisi Matematica 1", C.D. Pagani, S. Salsa, editore Zanichelli "Analisi Matematica 1", E. Giusti, editore Bollati Boringhieri "Funzioni Algebriche e Trascendenti", B. Palumbo, M.C. Signorino, editore Accademica "Analisi Matematica", M. Bertsch, R. Dal Passo, L. Giacomelli, editore MCGraw-Hill "Esercizi di Analisi Matematica", S. Salsa, A. Squellati, editore Zanichelli "Esercitazioni di Matematica: vol. 1.1 e 1.2", P. Marcellini, C. Sbordone, editore Liguori "Esercizi e complementi di Analisi Matematica: vol. 1", E. Giusti, editore Bollati Boringhieri
|
Date di inizio e termine delle attività didattiche
|
Dal al |
Modalità di erogazione
|
Tradizionale
|
Modalità di frequenza
|
Non obbligatoria
|
Metodi di valutazione
|
Prova scritta
|
Canale: CANALE 4
Mutua da
|
20802114 ANALISI MATEMATICA I in INGEGNERIA INFORMATICA L-8 CANALE 4 LAFORGIA ANDREA IVO ANTONIO
(programma)
Insiemi numerici (N,Z,Q e R), costruzione assiomatica di R tramite estremo superiore, proprietà di Archimede, densità di Q in R, costruzione di N e principio di induzione, binomio di Newton e calcolo combinatorio, potenze di esponente reale, disuguaglianza di Bernoulli; elementi di topologia in R (punti isolati e di accumulazione, insiemi aperti/chiusi e caratterizzazione, chiusura di un insieme) e teorema di Bolzano-Weierstrass; i numeri complessi, rappresentazione polare e radici n-esime dell'unità; funzioni reali di variabile reale, dominio, co-dominio e funzioni inverse; limiti di funzione e proprietà, limiti di funzioni monotone; limiti di successione, limiti notevoli, il numero di Nepero, il teorema ponte, limsup/liminf, successioni e topologia, insiemi compatti e caratterizzazione; funzioni continue e loro proprietà, continuità delle funzione elementari, tipi di discontinuità e funzioni monotone, teoremi fondamentali sulle funzioni continue (zeri, dei valori intermedi, Weierstrass); derivata di funzione e proprietà, derivate delle funzione elementari, i teoremi fondamentali del calcolo differenziale (Fermat, Rolle, Cauchy, Lagrange, de l'Hopital, formula di Taylor), monotonia e segno della derivata, massimi/minimi locali degeneri, funzioni convesse/concave; grafico di funzione; integrazione secondo Riemann e proprietà, integrabilità delle funzioni continue, primitive delle funzioni elementari, I e II teorema fondamentale del calcolo integrale, integrazione per sostituzione e per parti, funzioni razionali, alcune sostituzioni speciali; serie numeriche e convergenza, serie geometrica, criteri di convergenza per serie a termini positivi (confronto, confronto asintotico, radice, rapporto, condensazione) e per serie a termini qualsiasi (convergenza assoluta, Leibnitz); sviluppi in serie di Taylor, sviluppi di alcune funzioni elementari; integrali impropri.
(testi)
A. Laforgia, Calcolo differenziale e integrale, Ed. Accademica; P. Marcellini e C. Sbordone, Esercizi di Matematica, Vol. 1, tomi 1--4, Ed. Liguori;
|
Date di inizio e termine delle attività didattiche
|
Dal al |
Modalità di erogazione
|
Tradizionale
|
Modalità di frequenza
|
Non obbligatoria
|
Canale: CANALE 5
Mutua da
|
20802114 ANALISI MATEMATICA I in INGEGNERIA INFORMATICA L-8 CANALE 5 TOLLI FILIPPO
(programma)
Insiemi numerici (N,Z,Q e R), costruzione assiomatica di R tramite estremo superiore, proprietà di Archimede, densità di Q in R, costruzione di N e principio di induzione, binomio di Newton e calcolo combinatorio, potenze di esponente reale, disuguaglianza di Bernoulli; elementi di topologia in R (punti isolati e di accumulazione, insiemi aperti/chiusi e caratterizzazione, chiusura di un insieme) e teorema di Bolzano-Weierstrass; i numeri complessi, rappresentazione polare e radici n-esime dell'unità; funzioni reali di variabile reale, dominio, co-dominio e funzioni inverse; limiti di funzione e proprietà, limiti di funzioni monotone; limiti di successione, limiti notevoli, il numero di Nepero, il teorema ponte, limsup/liminf, successioni e topologia, insiemi compatti e caratterizzazione; funzioni continue e loro proprietà, continuità delle funzione elementari, tipi di discontinuità e funzioni monotone, teoremi fondamentali sulle funzioni continue (zeri, dei valori intermedi, Weierstrass); derivata di funzione e proprietà, derivate delle funzione elementari, i teoremi fondamentali del calcolo differenziale (Fermat, Rolle, Cauchy, Lagrange, de l'Hopital, formula di Taylor), monotonia e segno della derivata, massimi/minimi locali degeneri, funzioni convesse/concave; grafico di funzione; integrazione secondo Riemann e proprietà, integrabilità delle funzioni continue, primitive delle funzioni elementari, I e II teorema fondamentale del calcolo integrale, integrazione per sostituzione e per parti, funzioni razionali, alcune sostituzioni speciali; serie numeriche e convergenza, serie geometrica, criteri di convergenza per serie a termini positivi (confronto, confronto asintotico, radice, rapporto, condensazione) e per serie a termini qualsiasi (convergenza assoluta, Leibnitz); sviluppi in serie di Taylor, sviluppi di alcune funzioni elementari; integrali impropri.
(testi)
A. Laforgia, Calcolo differenziale e integrale, Ed. Accademica; P. Marcellini e C. Sbordone, Esercizi di Matematica, Vol. 1, tomi 1--4, Ed. Liguori;
|
Date di inizio e termine delle attività didattiche
|
Dal al |
Modalità di erogazione
|
Tradizionale
|
Modalità di frequenza
|
Non obbligatoria
|
Metodi di valutazione
|
Prova scritta
|
Canale: CANALE 6
Mutua da
|
20802114 ANALISI MATEMATICA I in INGEGNERIA INFORMATICA L-8 CANALE 6 NATALINI PIERPAOLO
(programma)
Insiemi numerici (N,Z,Q e R), costruzione assiomatica di R tramite estremo superiore, proprietà di Archimede, densità di Q in R, costruzione di N e principio di induzione, binomio di Newton e calcolo combinatorio, potenze di esponente reale, disuguaglianza di Bernoulli; elementi di topologia in R (punti isolati e di accumulazione, insiemi aperti/chiusi e caratterizzazione, chiusura di un insieme) e teorema di Bolzano-Weierstrass; i numeri complessi, rappresentazione polare e radici n-esime dell'unità; funzioni reali di variabile reale, dominio, co-dominio e funzioni inverse; limiti di funzione e proprietà, limiti di funzioni monotone; limiti di successione, limiti notevoli, il numero di Nepero, il teorema ponte, limsup/liminf, successioni e topologia, insiemi compatti e caratterizzazione; funzioni continue e loro proprietà, continuità delle funzione elementari, tipi di discontinuità e funzioni monotone, teoremi fondamentali sulle funzioni continue (zeri, dei valori intermedi, Weierstrass); derivata di funzione e proprietà, derivate delle funzione elementari, i teoremi fondamentali del calcolo differenziale (Fermat, Rolle, Cauchy, Lagrange, de l'Hopital, formula di Taylor), monotonia e segno della derivata, massimi/minimi locali degeneri, funzioni convesse/concave; grafico di funzione; integrazione secondo Riemann e proprietà, integrabilità delle funzioni continue, primitive delle funzioni elementari, I e II teorema fondamentale del calcolo integrale, integrazione per sostituzione e per parti, funzioni razionali, alcune sostituzioni speciali; serie numeriche e convergenza, serie geometrica, criteri di convergenza per serie a termini positivi (confronto, confronto asintotico, radice, rapporto, condensazione) e per serie a termini qualsiasi (convergenza assoluta, Leibnitz); sviluppi in serie di Taylor, sviluppi di alcune funzioni elementari; integrali impropri.
(testi)
A. Laforgia, Calcolo differenziale e integrale, Ed. Accademica; P. Marcellini e C. Sbordone, Esercizi di Matematica, Vol. 1, tomi 1--4, Ed. Liguori;
|
Date di inizio e termine delle attività didattiche
|
Dal al |
Modalità di erogazione
|
Tradizionale
|
Modalità di frequenza
|
Non obbligatoria
|
Metodi di valutazione
|
Prova scritta
|
|
|