Mutua da
|
20402083 AL310 - ISTITUZIONI DI ALGEBRA SUPERIORE in MATEMATICA (DM 270) L-35 N0 PAPPALARDI FRANCESCO, TALAMANCA VALERIO
(programma)
Introduzione: Equazioni di Cardano per la risolubilità delle equazioni di terzo grado, anelli e campi, la caratteristica di un campo, richiami sugli anelli di polinomi, estensioni di campi, costruzione di alcune estensioni di campi, il sottoanello generato da un sottoinsieme, il sottocampo generato da un sottoinsieme, elementi algebrici e trascendenti, campi algebricamente chiusi.
Campi di spezzamento: Estensioni semplici e mappe tra estensioni semplici, campi di spezzamento, esistenza del campo di spezzamento, unicità a meno di isomorfismi del campo di spezzamento, radici multiple, derivate formali, polinomi separabili e campi perfetti, polinomi minimi e loro caratterizzazioni.
Il Teorema fondamentale della Teoria di Galois: Gruppo degli automorfismi di un campo, estensioni normali, separabili e di Galois, caratterizzazioni di estensioni separabili, Teorema fondamentale della corrispondenza di Galois, esempi, gruppo di Galois di un polinomio, Estensioni radicali, gruppi risolubili e il Teorema di Galois sulla risoluzione delle equazioni, Teorema dell'esistenza dell'elemento primitivo.
Il calcolo del gruppo di Galois: Gruppi di Galois come sottogruppi di $S_n$, sottogruppi transitivi di $S_n$, caratterizzazione dell'irriducibilità in termini della transitività, polinomi con gruppi di Galois in $A_n$, Teoria dei discriminanti, gruppi di Galois di polinomi di grado minore o uguale a $4$, esempi di polinomi con gruppo di Galois $S_p$.
Campi ciclotomici: Definizioni, gruppo di Galois, sottocampi reali massimali, sottocampi quadratici, gruppi di Galois, polinomi ciclotomici e loro proprietà, Teorema della teoria inversa di Galois per gruppi abeliani.
Campi Finiti: Esistenza e unicità dei campi finiti, gruppo di Galois di un campo finito, sottocampi di un campo finito, enumerazione dei polinomi irriducibili su campi finiti. Costruzione della chiusura algebrica di un campo finito con $p$ elementi.
Costruzioni con riga e compasso: Definizione di punti del piano costruibili, numeri reali costruibili, caratterizzazione dei punti costruibili in termini di campi, sottocampi costruibili e costruzione di numeri costruibili, duplicazione del cubo, trisezione degli angoli, quadratura del cerchio e Teorema di Gauss per la costruibilità degli poligoni regolari con riga e compasso.
(testi)
J. S. Milne.Fields and Galois Theory. Course Notes v4.22 (March 30, 2011). S. Gabelli. Teoria delle Equazioni e Teoria di Galois. Springer UNITEXT (La Matematica per il 3+2) 2008, XVII, 410 pagg., ISBN: 978-88-470-0618-8 E. Artin.Galois Theory. NOTRE DAME MATHEMATICAL LECTURES Number 2. 1942. C. Procesi.Elementi di Teoria di Galois. Decibel, Zanichelli, (Seconda ristampa, 1991).
|