AC310 – COMPLEX ANALYSIS 1
(objectives)
TO ACQUIRE A SOLID KNOWLEDGE OF HOLOMORPHIC AND MEROMORPHIC FUNCTIONS OF ONE COMPLEX VARIABLE AND THEIR MAIN PROPERTIES. TO DEVELOP PRACTICAL SKILLS IN THE USE OF COMPLEX FUNCTIONS, ESPECIALLY IN COMPLEX INTEGRATION AND IN COMPUTATION OF REAL DEFINITE INTEGRALS.
|
Code
|
20402279 |
Language
|
ITA |
Type of certificate
|
Profit certificate
|
Credits
|
7
|
Scientific Disciplinary Sector Code
|
MAT/05
|
Contact Hours
|
72
|
Type of Activity
|
Core compulsory activities
|
Teacher
|
BESSI UGO
(syllabus)
EQUAZIONI DI CAUCHY-RIEMANN. SERIE DI POTENZE. FUNZIONI TRASCENDENTI ELEMENTARI. MAPPE CONFORMI ELEMENTARI, TRASFORMAZIONI LINEARI FRATTE. TEOREMA E FORMULA DI CAUCHY SU TRIANGOLI. PROPRIETÀ LOCALI DI FUNZIONI OLOMORFE (FORMULA E SERIE DI TAYLOR, ZERI E SINGOLARITÀ ISOLATE, MAPPE OLOMORFE LOCALI, PRINCIPIO DEL MASSIMO). IL TEOREMA GENERALE DI CAUCHY. RESIDUI. PRINCIPIO DELL'ARGOMENTO. TEOREMA FONDAMENTALE DELL'ALGEBRA. SERIE DI LAURENT. IL TEOREMA DELLA MAPPA DI RIEMANN.
(reference books)
AHLFORS LV COMPLEX ANALYSIS, NEW YORK, MC GRAW - HILL (1979) LANG, S., COMPLEX ANALYSIS, SPRINGER (1999) WALTER RUDIN, REAL AND COMPLEX ANALYSIS. MCGRAW HILL, (1987)
|
Dates of beginning and end of teaching activities
|
From to |
Attendance
|
not mandatory
|
Teacher
|
MORLANDO FABRIZIO
(syllabus)
EQUAZIONI DI CAUCHY-RIEMANN. SERIE DI POTENZE. FUNZIONI TRASCENDENTI ELEMENTARI. MAPPE CONFORMI ELEMENTARI, TRASFORMAZIONI LINEARI FRATTE. TEOREMA E FORMULA DI CAUCHY SU TRIANGOLI. PROPRIETÀ LOCALI DI FUNZIONI OLOMORFE (FORMULA E SERIE DI TAYLOR, ZERI E SINGOLARITÀ ISOLATE, MAPPE OLOMORFE LOCALI, PRINCIPIO DEL MASSIMO). IL TEOREMA GENERALE DI CAUCHY. RESIDUI. PRINCIPIO DELL'ARGOMENTO. TEOREMA FONDAMENTALE DELL'ALGEBRA. SERIE DI LAURENT. IL TEOREMA DELLA MAPPA DI RIEMANN.
(reference books)
AHLFORS LV COMPLEX ANALYSIS, NEW YORK, MC GRAW - HILL (1979) LANG, S., COMPLEX ANALYSIS, SPRINGER (1999) WALTER RUDIN, REAL AND COMPLEX ANALYSIS. MCGRAW HILL, (1987)
|
Dates of beginning and end of teaching activities
|
From to |
Attendance
|
not mandatory
|
|
|